
EUROVIS 2022/ S. Lenti, M. Krone, and J. Schmidt Poster

ANARI: ANAlytic Rendering Interface

K. Griffin1 , J. Amstutz†1 , D. DeMarle2, J. Günther‡2 , J. Progsch1 , B. Sherman4

J. E. Stone3 , W. Usher2 and K. van Kooten1

1NVIDIA, USA
2Intel Corporation, USA

3University of Illinois at Urbana-Champaign, USA
4National Institute of Standards and Technology, USA

Figure 1: Comparison of lighting techniques for a complex and crowded visualization of the results of a diffusion-limited aggregation
simulation, rendered using ANARI and the VisRTX back-end device. The lighting techniques, from left, are: raycasting of surface color,
directional lighting and shadows, ambient occlusion lighting, directional lighting with ambient occlusion, directional lighting with path
traced indirect lighting, and directional lighting combined with ambient occlusion and path traced indirect lighting.

Abstract
The ANARI API enables users to build the description of a scene to generate imagery, rather than specifying the details of the
rendering process, providing simplified visualization application development and cross-vendor portability to diverse rendering
engines, including those using state-of-the-art ray tracing.

CCS Concepts
• Computing methodologies → Graphics systems and interfaces; Rendering; Scientific visualization;

1. Introduction

The fundamental problem being solved by the ANARI [SGA∗22]
standard is to provide application developers with a high-level ren-
dering API that can be used to render images from scientific and
technical visualizations containing 3-D surface geometry and vol-
umetric data. The API will support rendering techniques such as
rasterization and high-fidelity path tracing with the goal of signifi-
cantly reducing overall application development-time cost.

Although many renderers and APIs already exist [WWB∗14,
WJA∗17, PBD∗10, HMCA15], and some of them successfully ad-
dress the primary requirement above, in practice they are vendor-,
hardware platform-, or rendering algorithm-specific, or they pro-
vide high-performance building blocks for rendering, but not a
complete renderer implementation with a high-level API. ANARI

† ANARI Working Group Chair
‡ ANARI Specification Editor

aims to address the limitations of these existing APIs. ANARI fully
abstracts vendor-, hardware platform-, and rendering algorithm-
specific details behind the API. By doing so, a multiplicity of ren-
dering back-end implementations can be used to their full capabil-
ity, without the need for renderer-specific code in applications that
use ANARI. Since ANARI provides a high-level API abstraction,
significant freedom is provided to back-end renderer implemen-
tations. This freedom enables implementations to use any practi-
cal rendering algorithm for image generation, although a key fo-
cus and interest for ANARI is support for high-fidelity physically
based rendering methods. ANARI applications do not specify the
details of the rendering process. Using the ANARI API, applica-
tions specify object surface or volume data to be rendered, and any
associated parameters that might affect appearance, such as their
material properties, texturing, and color transfer functions. ANARI
applications retain full responsibility for managing non-rendering
attributes of geometry through their own means. ANARI provides
rendering-focused functionality only, so higher level scene graphs

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/evp.20221126 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-3338-527X
https://orcid.org/0000-0001-6002-3739
https://orcid.org/0000-0001-8130-5022
https://orcid.org/0000-0003-1557-5766
https://orcid.org/0000-0001-7215-762X
https://orcid.org/0000-0003-4369-1502
https://doi.org/10.2312/evp.20221126


K. Griffin et al. / ANARI

and other more general functionality must be obtained through
other APIs or applications which use ANARI.

Scientific visualization has diverse rendering needs involving
trade offs among quality, speed, and scalability to available hard-
ware resources. It is typical for visualization applications [HDS96,
CBW∗12,SB92,AGL05] to use both visual and quantitative render-
ing techniques to satisfy user demands. Furthermore, it is common
for an application to need rendering from local CPU or GPU hard-
ware, with parallel scaling through multiple machines in a cluster
to exploit additional distributed compute and memory resources.
The ANARI API provides the necessary abstractions to allow these
needs to be met by back-end renderers, without excessive expo-
sure of hardware or rendering algorithm details to the application.
ANARI seeks primarily to standardize emerging work found in sci-
entific visualization, and also (where practical) to do the same for
related domains, such as professional visualization, visual effects,
and engineering CAD. Multiple ANARI back-ends may be exposed
through the API at runtime. The ANARI API provides the applica-
tion with the means to enumerate available back-ends, methods for
querying high-level capabilities of the available back-ends, and the
ability to instantiate a back-end and at least one associated renderer,
which can then be used to render images.

2. API Design

The ANARI API is specified as a C99 API in order to provide
compiler-independent linkage, which allows easy integration into
a broad range of applications based on a variety of compiled lan-
guages, including C, C++, Fortran, and dynamic languages such as
Python and Julia, among others. It has a common API header and
front-end library (using either static or dynamic linkage) capable
of loading available ANARI back-end device implementations at
runtime. ANARI back-end devices are created by standard imple-
mentors and are expected to be distributed, installed, or upgraded
independently of the standard API header and front-end library.

The ANARI API is designed to encapsulate scene data and ren-
dering operations as opaque object handles using string-value pairs
to parameterize them. This facilitates a predominantly unidirec-
tional flow of scene information from the application to the instan-
tiated ANARI device. As a result, the vast majority of ANARI API
calls have a write-only behavior pattern to minimize imposed im-
plementation requirements. An application can create ANARI ob-
jects and set named inputs on them called parameters. However,
no mechanism is provided to subsequently query parameter data,
since even the existence of a query mechanism would impose ad-
ditional performance costs and storage requirements for back-end
renderer implementations (e.g. distributed rendering contexts). Ob-
ject introspection can be used to query object subtypes and infor-
mation about their parameters. Additionally, ANARI objects can
publish named outputs called properties. Such output is specific to
the type and semantics of the object, but has a generic interface
function for access.

ANARI scenes are represented as hierarchies of objects (Fig-
ure 2). The Frame is the root object of the scene. It holds the frame
buffer configuration and the World, Camera, and Renderer ob-
jects. The Camera configures the projection of the rendering used

Frame

World

Instances

Instance

Group

Surfaces

Surface

Geometry

Material

Volumes

Volume

Spatial Field

Lights

Surfaces Volumes Lights

Camera Renderer

Figure 2: ANARI scene description in memory.

to view the World. The Renderer holds parameters relating to
the rendering algorithm. The World holds arrays of the drawable
objects of the scene such as Surface, Volume, and Light either
directly or via an array of Instances each containing a Group.
A Group holds arrays of Surface, Volume, and Light to be in-
stanced together. An Instance combines a Group with a transform
for placement of the same collection of objects at multiple loca-
tions within the same World. A Surface represents drawable sur-
faces containing a Geometry and a Material. A Geometry spec-
ifies drawable primitives and data associated with them. A Mate-
rial specifies the surface’s appearance related to the data from the
Geometry. A Volume represents volumetric drawable objects and
may contain Spatial Field objects. A Spatial Field represents a
field of values in 3D space. A Light represents sources of illumi-
nation.

3. Conclusion

The ANARI API enables developers to build a scene description to
generate imagery, rather than specifying the details of the rendering
process. Unlike more general scene graph APIs, ANARI focuses
primarily on rendering operations and leaves other domain-specific
scene operations in the hands of the application itself. ANARI
back-end renderers are free to expose new ANARI extensions, e.g.,
those that add new geometric primitives, load custom shaders, or
provide enhanced efficiency with other APIs. ANARI extensions
can be candidates for adoption into the core ANARI API if there’s
enough synergy between other back-ends. As of this writing, the
ANARI specification is in provisional status. Future work will con-
sist of finalizing the remaining features needed for ANARI 1.0.

If interested, there are a couple of ways to get involved in the
development of the ANARI (https://www.khronos.org/anari)
specification. The first is to become a Khronos member and join
the ANARI working group. The second way is to be invited by
the ANARI working group to join the ANARI Advisory Panel.
The ANARI SDK is available on GitHub (https://github.
com/KhronosGroup/ANARI-SDK) and includes links to vendor-
specific back-end renderer implementations. The latest ANARI
specification is also available on GitHub (https://github.com/
KhronosGroup/ANARI-Registry).

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

84

https://www.khronos.org/anari
https://github.com/KhronosGroup/ANARI-SDK
https://github.com/KhronosGroup/ANARI-Registry


K. Griffin et al. / ANARI

References
[AGL05] AHRENS J. P., GEVECI B., LAW C. C.: ParaView: An End-

User Tool for Large-Data Visualization. In The Visualization Handbook
(2005), Elsevier. ISBN: 978-0123875822. 2

[CBW∗12] CHILDS H., BRUGGER E., WHITLOCK B., MEREDITH J.,
AHERN S., PUGMIRE D., BIAGAS K., MILLER M., HARRISON C.,
WEBER G. H., KRISHNAN H., FOGAL T., SANDERSON A., GARTH
C., BETHEL E. W., CAMP D., RÜBEL O., DURANT M., FAVRE J. M.,
NAVRÁTIL P.: VisIt: An End-User Tool For Visualizing and Analyz-
ing Very Large Data. In High Performance Visualization–Enabling
Extreme-Scale Scientific Insight. Oct 2012, pp. 357–372. doi: 10.
1145/2535571.2535595. 2

[HDS96] HUMPHREY W., DALKE A., SCHULTEN K.: VMD – Visual
Molecular Dynamics. Journal of Molecular Graphics 14, 1 (1996), 33–
38. doi: 10.1016/0263-7855(96)00018-5. 2

[HMCA15] HANWELL M. D., MARTIN K. M., CHAUDHARY
A., AVILA L. S.: The Visualization Toolkit (VTK): Rewriting
The Rendering Code for Modern Graphics Cards. SoftwareX
1-2 (2015), 9–12. doi: 10.1016/j.softx.2015.04.001.
URL: https://www.sciencedirect.com/science/
article/pii/S2352711015000035, doi:https:
//doi.org/10.1016/j.softx.2015.04.001. 1

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., STICH M.: OptiX: A General Purpose Ray
Tracing Engine. In ACM SIGGRAPH 2010 papers (New York, NY,
USA, 2010), SIGGRAPH ’10, ACM, pp. 66:1–66:13. doi: 10.1145/
1778765.1778803. 1

[SB92] SAYLE R., BISSEL A.: RasMol: A Program for Fast Realistic
Rendering of Molecular Structures with Shadows. In Proceedings of the
10th Eurographics UK ’92 Conference (1992). 2

[SGA∗22] STONE J. E., GRIFFIN K., AMSTUTZ J., DEMARLE D. E.,
SHERMAN W., GUENTHER J.: ANARI: A 3D Rendering API Standard.
Computing in Science Engineering (2022), 1–1. doi: 10.1109/MCSE.
2022.3163151. 1

[WJA∗17] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GUNTHER J., NAVRATIL P.: OSPRay – A
CPU Ray Tracing Framework for Scientific Visualization. IEEE Trans-
actions on Visualization and Computer Graphics 23, 1 (2017), 1–1. doi:
10.1109/TVCG.2016.2599041. doi:10.1109/TVCG.2016.
2599041. 1

[WWB∗14] WALD I., WOOP S., BENTHIN C., JOHNSON G. S., ERNST
M.: Embree: A Kernel Framework for Efficient CPU Ray Tracing. ACM
Trans. Graph. 33, 4 (July 2014), 143:1–143:8. doi: . 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

85

10.1145/2535571.2535595
10.1145/2535571.2535595
10.1016/0263-7855(96)00018-5
10.1016/j.softx.2015.04.001 
https://www.sciencedirect.com/science/article/pii/S2352711015000035
https://www.sciencedirect.com/science/article/pii/S2352711015000035
https://doi.org/https://doi.org/10.1016/j.softx.2015.04.001
https://doi.org/https://doi.org/10.1016/j.softx.2015.04.001
10.1145/1778765.1778803 
10.1145/1778765.1778803 
10.1109/MCSE.2022.3163151
10.1109/MCSE.2022.3163151
10.1109/TVCG.2016.2599041
https://doi.org/10.1109/TVCG.2016.2599041
https://doi.org/10.1109/TVCG.2016.2599041

