EUROVIS 2022/ S. Lenti, M. Krone, and J. Schmidt

Poster

Visualizing Prediction Provenance in Regression Random Forests

N. Médoc! , V. Ciorna?

,F. Petry2 ,and M. Ghoniem?

Luxembourg Institute of Science and Technology, Luxembourg
2Goodyear Innovation Center Luxembourg, Luxembourg

Abstract

Random forest models are widely used in many application domains due to their performance and the fact that their constituent
decision trees carry clear decision rules. Yet, the provenance of the predictions made by an entire forest is complex to grasp,
which motivates application domain experts to adopt black-box testing strategies. We propose in this paper a coordinated
multiple view system allowing to shed more light on prediction provenance, uncertainty and error in terms of bias and variance
at the global model scale or at the local scale of decision paths and individual instances.

CCS Concepts

* Human-centered computing — Visualization; * Computing methodologies — Classification and regression trees;

1. Introduction

Decision tree models owe their popularity to the fact that any pre-
diction can be explained as a relatable cascade of rules. A random
forest (RF) is an ensemble method using a collection of decision
trees as weak learners. Unlike single decision tree models, random
forests do not overfit [Bre0O1], hence their wide use in many appli-
cation areas. The provenance of their predictions is still complex
to apprehend. To build trust in the behavior of a predictive model,
including random forests, an application domain expert will often
adopt a black-box testing strategy [Ost02] by trying different in-
puts and comparing the model outputs to her expectations. Regard-
less of the model evaluation work done by the model builder, the
end user will still need a way to build trust in the model. We focus
on the following goals related to the trust levels (7L) of Chatzim-
parmpas et al. [CMJ*20]: (G;) what rules/criteria the model uses
to reach a given prediction (7L3, understanding and explanation)?
(G,) what data was used to learn the model or to form a decision
path (TL3, diagnosis)? (G3) what is the degree of uncertainty for
a prediction (7L4, performance, model bias and variance)?

Previous work using visual analytics to explain decision tree
ensembles raises several known challenges, including: visualiz-
ing many decision trees [MNP21,NP21], summarizing the learned
decision rules [ZWLC19], supporting hyper-parameter tuning
and comparing model accuracy for multi-class prediction mod-
els [LXL*18]. Most visual analytics solutions for machine learn-
ing focus more on classification and less on regression [CMJ*20].
Also, most solutions provide global model quality scores, and
rarely local instance-level provenance information, e.g., Neto and
Paulovich [NP21] or Sawada and Toyoda [ST19] for classification.

Focusing on regression random forests, this paper presents a vi-
sual approach to assess prediction errors in terms of bias and vari-
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ance. By coordinating existing visualizations, we show how user
interaction can support the analysis of prediction provenance at in-
stance level or for all instances falling in a selected decision path.

2. System overview

Figure 1 shows the user interface of the SYLVIA system (from the
latin silva, i.e. forest, and visual analytics) comprising four coordi-
nated views. A table view (Figure 1 a) lists all models trained on
a given data set, e.g. with different hyper-parameters. A set of bar
charts (Figure 1 b) shows relative feature importance according to
five different metrics, along with variance bars across all models.
Features are distinguished by their color on a categorical palette.

A grid of icicle plots (Figure 1 c) gives an overview of the forest
and the topology of each decision tree. Each internal node repre-
sents a decision rule based on a threshold of a feature in the data.
Nodes are colored consistently with the bars of the bar charts. A
path in the tree is a cascade of rules that lead to a decision reached at
the level of its leaf node. Since leaf nodes do not correspond to any
specific feature, they are colored in gray. Node size encodes the rel-
ative number of instances funneled through the node during model
training. This shows, at the scale of a tree, which decision path (DP)
was more frequently used during the learning phase. Some decision
paths built with few instances may be too skinny. Switching to unit
weights on all leaf nodes helps to see the tree topology.

A residual error vs. predicted scatterplot (Figure 1 d) supports
the assessment of model quality, combined with a bar chart show-
ing the distribution of residual errors. Usual model quality scores
are displayed above the scatter plot. Instances colored in blue and
orange belong to the training set and the test set respectively. The
user gets a direct impression of global model bias from the his-
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(a) Table of RF models

Name max_depth
D bike_sharing_day RFO 50 10 12 0793 617.983 0.108 1708

max_leaf_nodes n_estimators adj_r2_test mae_test nrmse_test mape_test
) bike_sharing_day_RF1 50 10 30 0795 620.506 0.107 17
) bike_sharing_day_RF2 50 10 49 0775 640.793 0.112 1898

) bike_sharing_day_RF3 50 10 100 0781 633.882 0111 1835

(b) Feature importance + A

rity/Gini (%) Permutation (Neg MSE) ANOVA (Scores) Split count (Mean)
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(c).Internal structure of RF
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(d) Scatterplot view
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Figure 1: Overview of SYLVIA: (a) the list of models trained on a given data set; (b) features sorted by importance according to different
metrics; (c) the internal structure of the random forest (RF); (d) residual vs. predicted scatterplot.

togram of residuals. For instance, the multi-modal distribution of
test data (orange) in Figure 1 shows an important bias of the model.
From the scatterplot, the domain expert can also judge for each pre-
diction the magnitude of residual error. For a given predicted value
(abscissa), the spread of the residual errors along the Y-axis reflects
prediction bias (G3), noticeable in Figure 1-d by the vertical align-
ment of instances. The scatterplot can also be used in a predicted vs.
actual mode, which in passing leads to more accurate model quality
judgment than the reverse actual vs. predicted mode [PPGP0S].

Coordinating the icicle plot grid and the scatter plot helps to pin
point local patterns that might explain model performance.
Selecting an instance in the scatterplot highlights the DP where
the instance falls, i.e. the applicable decision rules (G). The back-
ground color of each icicle plot encodes the difference between
the selected instance and the prediction yielded by the DP on a di-
verging red-white-blue color palette (red for negative and blue for
positive), as in Figure 1 c. This helps the analyst understand the
prediction bias for a given instance at the level of each tree and
identify precisely which trees and DPs provide good or poor pre-
dictions (G3). The distribution of background color gives a sense
of the agreement between the trees, which may be seen as a visual
indication of prediction uncertainty (G3). In Figure 1 c, a split node
on “season” appears in all DPs with a red background only. This
rule seems to explain the prediction disagreement between trees.
Details on demand are obtained as tooltips when hovering over in-
ternal tree nodes including feature name and the split threshold, or
the predicted value for leaf nodes (Figure 1 c).

Selecting a decision path in the RF highlights in the scatterplot all
instances falling in that path (G»). By inspecting the spread of the
selected instances along the X-axis or the Y-axis, the analyst can as-

sess the prediction variance, respectively the prediction bias, within
the selected DP (G3). When the highlighted instances are shifted to
the right of the initial (black) instance the residual error at the DP
level is positive, as in Figure 1 d.

Persisting the selected instances after switching models allows to
compare variance and bias across models for these instances (G3),
e.g. to analyze the impact of model hyper-parameters, e.g., number
of trees, or tree morphology, on prediction quality. The proposed
interactions aim to give an intuitive understanding of model bias
and variance and possible trade-offs between model complexity
and model performance, as shown in the supplementary material.

3. Discussion and future work

This work stems from an industrial collaboration, where domain
experts develop products with critical safety consequences. Predic-
tive models promise to speed up current development processes, but
cannot be deployed based on faith in data science only [SMK™*18].
In SYLVIA, the grid of icicle plots exposes the internal structure
of an RF and the scatter plot shows local patterns of bias and
variance. An analyst can identify and analyze local patterns sur-
rounding a prediction at the level of each decision tree and get
a sense of certainty and a more precise context for the predic-
tion. Yet, a forest with many intricate trees may be daunting. Prior
work shows that the performance of an RF will plateau around 100
trees [OPB12]. To scale up this approach, sorting and clustering the
decision trees may help to understand the variety of trees in the for-
est. One may also run an experiment to identify the pros and cons
of this approach compared to other approaches, e.g. matrix of deci-
sion paths [NP21]. Finally we are extending SYLVIA to handle tree
boosting approaches in which decision trees are interdependent.
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