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Abstract
The detailed analysis of tissue composition is crucial for the understanding of tissue functionality. For example, the location
of immune cells related to a tumour area is highly correlated with the effectiveness of immunotherapy. Therefore, experts are
interested in presence of cells with specific characteristics as well as the spatial patterns they form. Recent advances in single-cell
imaging modalities, producing high-dimensional, high-resolution images enable the analysis of both of these features. However,
extracting useful insight on tissue functionality from these high-dimensional images poses serious and diverse challenges to data
analysis. We have developed an interactive, data-driven pipeline covering the main analysis challenges experts face, from the
pre-processing of images via the exploration of tissue samples to the comparison of cohorts of samples. All parts of our pipeline
have been developed in close collaboration with domain experts and are already a vital part in their daily analysis routine.

CCS Concepts
• Human-centered computing → Visualization systems and tools;

1. Introduction

Spatially resolved omics are currently revolutionizing the under-
standing of the organization of cells and tissues. The journal Na-
ture Methods just proclaimed spatially resolved transcriptomics as
method of the year 2020 [Mar21]. Spatially resolved transcriptomics
and other spatially resolved omics methods allow the acquisition of
highly multiplexed imaging data of various biochemical properties,
such as transcriptomics or proteomics [CB19]. The resulting data
enables experts to explore spatial cellular patterns in tissue context
in unprecedented detail and as such have the potential to signifi-
cantly change medicine. For example, the spatial localisation of
immune cells with respect to a tumour is important for immune cell
recognition. Both immune-excluded and immune-inflamed tumours
are characterised by a high number of immune cells but respond
differently to immunotherapy due to the localisation of the immune
cells [dORZC20]. Spatial characterisation of the tumour immune
micro-environment could thus help determine which patients are
good candidates for immunotherapy.

However, data analysis methods for this kind of data are still
lacking. The large amount of different cell types, in combination
with their spatial information creates a complex system to analyze,
with limited prior knowledge. Current solutions for the exploration
of cellular patterns [SJR∗17] or the comparison of cohorts based on
them [YFR∗12] are limited to statistical hypothesis testing, where
a limited amount of combinations can be tested, posing the risk of

missing information and introducing biases. Moreover, the quality of
any findings is uncertain due to the insufficient pre-processing of the
data, which lacks image de-noising and often utilizes sub-optimal
cell segmentation algorithms.

In collaboration with clinical researchers from Leiden University
Medical Center (LUMC), we developed a pipeline for the analysis of
high-dimensional tissue imaging data sets, focused on the analysis
of spatial cellular patterns. Our pipeline covers the major parts of the
analysis process. We worked on data normalization and segmenta-
tion to provide reliable input to the main analysis components. With
ImaCytE, we designed and implemented a visual analytics frame-
work that enables experts to identify cell types, label the segmented
cells based on the measured tissue properties in an interactive and
data-driven way and to explore the micro-environments the different
cell types form. Based on the resulting segmented and labelled cell
images, SpaCeCo enables the comparison of two distinct cohorts,
based on their tissue characteristics. Throughout the process and for
all resulting applications, we put special focus on the sustainability
of our pipeline, by supporting standard domain practices and data
types for import and export.

2. Background

From basic science to clinical practice, a wide spectrum of studies
are utilizing spatial omics data to answer specific questions regard-
ing tissue functionality. The specific characteristics of each study
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Figure 1: Screenshot of ImaCytE, our integrated system for the
analysis of Imaging Mass Cytometry data.

dictate the type of measured characteristics. We built and tested our
pipeline with data originating from two modalities, Imaging Mass
Cytometry [GWS∗14] and the Vectra imaging system [IBA∗19], that
are used by our clinical partners.

Both modalities produce highly multiplexed imaging data, i.e.,
images where every pixel contains multiple scalar values, each
representing the abundance of a specific, pre-defined protein at sub-
cellular resolution. The main difference between the methods, from
a data analysis perspective, is the resulting number of attributes, or
dimensionality. Imaging Mass Cytometry can measure in the order
of 40 different proteins simultaneously, while Vectra is currently lim-
ited to around six. However, Vectra offers much higher throughput
and therefore more suited for clinical applications and the analysis
of bigger cohorts. In principle, our pipeline can be utilized, as a
whole or partially, for other types of spatial omics methods that
produce sub-cellular resolution images.

As the acquisition of spatial omics data is a relatively new phe-
nomenon, currently they are often included in larger studies, mainly
using related non-spatial data, for qualitative analysis. In such cases
only few images are analysed. With the high-throughput Vectra,
larger studies centered around spatial analysis have become feasible,
requiring analysis capacities for hundreds of images.

3. Contribution

In this project, we aim to support clinical researchers with diverging
application and research goals with an holistic analysis pipeline for
imaging omics data. More specifically, we worked on three major
parts of the analysis pipeline. Clean and reliable data is paramount
for proper downstream analysis. In the Pre-processing stage (Sec-
tion 3.1), we introduced a semi-supervised method for noise removal
and normalization between samples and dimensions [ISL∗20], and
developed a segmentation workflow supporting complex cellular
morphology such as microglia [KSdH∗21]. For in-depth analysis
of individual images, including contained cells and the Micro-
Environment Exploration (Section 3.2), we have developed Ima-
CytE [SvUK∗19] (Figure 1), a visual analytics framework, allowing
cell type identification within tissue as well as the exploration of
formed neighborhoods. Finally, we worked on Cohort Compar-
ison (Section 3.3) of labelled images [SIL∗20](Figure 2) for the
identification of cell types or cell micro-environments that can be
used as biomarkers for health and disease or deteriorating disease.

Figure 2: Screenshot of SpaCeCo, our system for cohort compari-
son based on cell type abundance and cellular micro-environments.

3.1. Pre-processing

Normalization. The protein abundance range in Imaging Mass Cy-
tometry data differs among tissue samples from different partici-
pants, due to different tissue preservation and acquisition protocols
for each sample [BSBT11]. Hence, the combination of data from
multiple subjects in a clinical study requires normalization of the
samples in order to produce comparable downstream results, free
of batch effects. To that end, we propose a semi-supervised work-
flow [ISL∗20] to pre-process the images acquired from Imaging
Mass Cytometry for cohort analysis. After percentile based outlier
removal, manual annotations of a small subset of images are used to
train a classifier to define for actual signal and background pixels
using Ilastik [BKK∗19]. The result is binary masks for each attribute
image, classifying each pixel as expressing the protein or not. We
then define relative expression levels per cell as the fraction of pos-
itive pixels compared to the total segmented area of the cell. We
show that this effectively removes the impact of unreliable quanti-
tative expression values, eliminates non-biological variation in the
data and detects previously untraceable cell types [ISL∗20]. While
normalization is important, this last step of aggregating data per cell
also heavily relies on the segmentation of said cells.

Segmentation. Imaging modalities provide per-pixel measure-
ments. To extract the cellular information from the corresponding
images, we first need to segment them. For the majority of the
cellular types with a circular shape, a standard semi-supervised
workflow has been established [SJR∗17]. However, for example
microglia cells, the immune cells of the brain demand a unique ap-
proach for segmentation, due to their complex structure. Microglia
cells consist of the main part of the cell (soma) and long branches
(processes). To that end, we developed a novel workflow for the
segmentation of complex cell shapes as prevalent in microglia cells
acquired in high resolution brain imaging with the Vectra imaging
modality [KSdH∗21].

The identification of the whole microglia cell area, especially
when many microglia cells attack a pathogen and consort around
it, is a difficult process. We tackle this problem, starting with the
identification of the soma, using the sum of four channels (i.e.,
membrane markers) where the soma shows highest intensity values.
Further it overlaps with the cell nucleus, which is highlighted by
DAPI nucleus marker in another image channel. We first segment
the soma and then keep only the components that overlap with a
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nucleus. For both steps, we utilize a level-set-based cell segmenta-
tion method [DVCE∗10]. For the microglia cells close to pathogens
whose soma often overlap between multiple cells, we apply water-
shed segmentation [Beu79] to identify the unique soma structures. A
major common problem in cell segmentation is the exclusion of pro-
cesses from the microglia cells, as the acquired images are 2D and
the processes are detached from the soma as they connect in a differ-
ent depth. We solve this problem assigning all detached processes
which are identified in a close radius of each soma to the correspond-
ing microglia cell. In a brief evaluation [KSdH∗21], we achieved
significantly better overlap with a manual segmentation, compared
to currently used standard cell segmentation algorithms. We uti-
lized the segmentation algorithm in a study covering the role of iron
accumulating microglia cells in Alzheimer’s disease [KSdH∗21].

3.2. Micro-environment Exploration

Spatial omics data provides the possibility to map identified cells
to their position in tissue. This allows to investigate co-localization
patterns, or micro-environments, which are hypothesized to play
an important role in cell behaviour and functionality. Therefore,
we developed a visual analytics framework, ImaCytE [SH19], for
interactive micro-environment exploration of Imaging Mass Cytom-
etry. ImaCytE allows quality control, cell type identification and
micro-environment exploration in a single, integrated application.

Quality Control. Basically all spatial omics data requires exten-
sive pre-processing, as for example described in Section 3.1. To
verify the quality of the processed data, ImaCytE allows for in-
teractive, visual quality control. This allows the identification of
markers or proteins that did not stain well (i.e. dimensions that
should be excluded from the analysis) or samples that were not
normalized correctly. We achieve this by use of a small multiples
view to quickly compare multiple dimensions for a single sample or
the same dimension for multiple samples, respectively.

Cell Type Identification. After the selection of the samples and
markers that meet the quality standards, the first main goal is the
identification of the different cell types. The combination of various
cell types reveals the identity of the tissue sample. The presence
of cancer cells, for example, can characterize a tissue sample as
tumour. The type of each cell is defined by the expression levels of
the selected proteins. Hence, following previous work on non-spatial
cytometry data [HPvU∗16], we derive a two-dimensional embedding
based on the high-dimensional protein signature of each cell. The
embedding enables the visual inspection of the similarities among
cells and the clustering of the visually identified groups of cells.
To label the identified clusters as biologically relevant cell types,
ImaCytE also enables the user to visually inspect the aggregated
protein expression values of each cluster via a heatmap view and
identify spatial patterns in a tissue view.

Micro-environment Exploration. Having identified the cell
types, more complex questions, such as “How often immune cells at-
tack cancer cells?” arise. ImaCytE offers the expert an overview of
how frequently any two cell types spatially interact, as well as a de-
tail exploration of existing micro-environment motifs. The overview
information is encoded with a heatmap, where each column rep-
resents a cell type of interest and each row a cell type that exist

a) b) c) d)

Figure 3: Glyph Design. All cells and their corresponding micro-
environment (a) are abstracted to a donut chart with the cell of
interest as an extra circle in the center (b). We then combine multiple
instances of the same motif to a single glyph, showing the mean
frequencies and variation (c). In d) we add an indicator for the
significance of the motif in the top right corner.

in its micro-environment. While this overview provides a general
idea of tissue functionality, it is not adequate to answer more com-
plex questions. For example, “When immune cells attack cancer
cells are they also accompanied by Helper T cells or cells from
this newly identified type?”. To answer such questions, ImaCytE
uses the concept of motifs to illustrate all possible cell combina-
tions existing in the cellular micro-environments. We designed a
simple glyph, inspired by the actual spatial composition, to visualize
these motifs (Figure 3). The amount of motifs in each study can
vary from hundreds to thousands. To facilitate their exploration, we
display the corresponding glyphs in a small multiples view, offer-
ing various filtering and sorting options and linking them with the
overview exploration. During micro-environment exploration it is
crucial to place any spatial interaction into the tissue context. A
cancer cell, detached from a tumour is an easy target for other cell
types, creating unique and diverse micro-environments. However,
these micro-environments are clinically not relevant as they do not
exhibit the natural behavior of cancer cells. In order to identify the
relevance of spatial interactions, ImaCytE enables the location of
any spatial interaction in the tissue.

In ImaCytE, the glyphs are being used in a separate view, typi-
cally ordered by significance or frequency. If the images are rather
sparsely populated with cells, the glyphs can also be useful for in-
place visualization. We have used this in a later study [KSdH∗21] on
Vectra-captured brain images, where a glyph represents the cellular
micro-environment around the identified pathologies (Figure 4).

Figure 4: Glyphs in Tissue Context. The described motif glyph
shown in context of the tissue (a), compared to showing the full
labeled data (b). Here the glyphs are used to aggregate and present
information on a large, stitched sample (14560×13920 pixels).
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In our original publication [SvUK∗19], we illustrate the efficacy
of our system through a case study with an expert collaborator,
analysing the interactions among cancer and immune cells from
eight different tissue samples. The expert initially inspected the
quality of the data and identified 20 distinct cell types. Then, she
filtered from the interaction overview the motifs that include only
non-proliferating cells and sorted them according to their frequency.
She found out that a motif illustrating a spatial interaction among a
specific immune cell type and non-proliferating cancer cells showed
unexpected frequency. Hence, she hypothesized that an up-regulated
protein of the immune cell type inhibits the proliferation process of
cancer cells. Currently, ImaCytE is deployed with our collaborators
within LUMC, who use it regularly for the analysis of Imaging
Mass Cytometry data on a wide range of studies including synovial
sarcoma or colorectal cancer.

3.3. Cohort Comparison

With ImaCytE, we focused on the analysis and exploration of cell
types and cellular micro-environments in individual samples. To
identify whether these characteristics are correlated with a specific
clinical condition or tissue functionality we built an interactive
visual system, SpaCeCo [SH20], for the comparison of two distinct
cohorts of tissue samples. Additionally, our system enables the
outlier detection within a cohort, as it can provide important clinical
information, for example on subjects with different stages of a
disease within the same cohort. At the same time, it allows the
linking of any finding to its spatial position to verify it and place it
into the general comparison context.

Cell Type Abundance. In Section 3.2, we described the impor-
tance of cell type abundance as a defining characteristic of tissue
identity. In SpaCeCo, we allow the comparison of the cohorts based
on the abundance of contained cell types. We accomplish this by
illustrating the distribution of samples according to the abundance of
each cell type within each cohort by superposing two parameterized
versions of the raincloud plots, using two complementary colors
(blue and orange) [APW∗19](Figure 5). The density plot allows the
identification of differences among the cohort distributions and to-
gether with the scatterplot clinically important outliers.The compact
size of the design enables us to illustrate the plots for multiple cell
types in the same view. To support large numbers of cell types, we
implemented a dynamic filtering and search feature, to quickly focus
the visual exploration on cell types of interest.

Cellular Micro-environments. Even though the cell type abun-
dance is an important tissue characteristic it is not enough to charac-
terize tissue functionality. Cohorts of samples with similar cell type
abundances may exhibit different behavior, caused by the spatial
micro-environments and resulting potential interactions between
cells. As described in Section 3.2, the number of possible different
micro-environments is extremely large and as a result the number of
micro-environments that differentiate the two cohorts can be large as
well. Thus, we designed a two-step approach for the comparison of
the cohorts, providing first an overview of the main pairwise spatial
interactions and afterwards detailed comparison of more complex
micro-environments through an interactive visual query system. In
the overview, we calculate the pairwise local co-occurrence of all
contained cell types in each sample for both cohorts. The difference
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Figure 5: Examples of raincloud plots, illustrating the abundance
of different cell types in the samples of two cohorts.

of these co-occurrences between the two cohorts are shown in a
heatmap by an explicit encoding with a diverging colormap. Besides
the diverging colormap, this view is similar to the one described in
Section 3.2, providing a familiar tool for users experienced with Ima-
CytE. In order to compare the two cohorts based on more complex
micro-environments, we implemented an interactive visual query
system inspired by Polaris [SH02] that allows the expert to select
any combination of cell types and explore their occurrence in each
sample. The occurrence of the selected micro-environment is then
shown with the presented raincloud plots.

We present several case studies in the original paper [SIL∗20],
illustrating the efficiency and versatility of the system. In a first
published study [KSdH∗21], our collaborators utilized our system
for the comparison of Alzheimer patients and control individuals.
Through initial exploration with SpaCeCo, our collaborators identi-
fied a positive correlation among the spatial proximity of amyloid
plaques and iron-loaded microglia cells in Alzheimer patients. The
results of this initial exploration were then later statistically verified.

3.4. Discussion

In this project, we have designed and implemented a complete
pipeline for the analysis of spatial omics-data, which spans from
the segmentation of complex cellular structures and image pre-
processing over the exploration of cellular micro-environments to
the detailed comparison of clinically distinct cohorts of samples.

Besides the scientific output, the project resulted in two open-
source software applications [SH19, SH20] that have attracted the
attention of the domain science community. Both tools are deployed
with and used by our collaborators within LUMC, as well as domain
researchers world-wide [Gar21]. The advent of high multiplexed im-
ages which can capture tissue functionality at sub-cellular resolution
is a very recent but highly relevant development [Mar21]. Currently
their analysis is still in an early stage, often limited to the identi-
fication of cell types. The use of the clinical information derived
from the detailed exploration of the cellular micro-environment is
still lacking, but is highly awaited [dVMKdM20, GvUI∗20]. As
such, we regard the presented holistic pipeline that enables clinical
experts to formulate important clinical hypothesis a crucial step for
the analysis of spatial omics data.
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