
Hayder M. Al-maneea1,2 and Jonathan C. Roberts1
1Bangor University, 2University of Basrah

INTRODUCTION

DISCUSSION AND CONCLUSIONS

REFERENCES

Figure 1: ‘Layouts for Multiple View’ (LMV) tool.
First screen, Template viewer. Users can choose
a starting layout, search for a specific view
quantity. They can later edit the template.

Figure 2: LMV tool, with three linked views:
(A) grammar panel to edit the grammar (either
shorthand e.g., v(50,50) or full JSON, shown),
(B) Visualisation panel of either the wireframe
editor or visualisation editor (shown) and (C)
property panel.

ABSTRACT

CONTACTS

A tool to help lay out Multiple View Visualisations guided by view analysis

<Hayder M. Al-maneea>
Email: h.m.almaneea@bangor.ac.uk

<Jonathan C. Roberts>
Email: j.c.roberts@bangor.ac.uk

In this poster, we present ‘Layouts
for Multiple View’ (LMV), a tool that
helps users build, control and save
multiple view visualisations simply
and easily using a bespoke grammar.

The tool incorporates template
multiple view layout strategies as
quantified from prior research on
view analysis, and the user can build
different layouts by defining the
grammar, or through the linked
visual interface.

LMV saves the multiple view layout
as a JSON file, including all the
details of the layout and attributes
of the visualisation, which can be
subsequently loaded and adapted or
used to create dashboards.

LMV guides the user to:
(i) Design and control the multiple

view layout.
(ii) Add data and allocate a specific

visualisation technique for each
view.

(iii) Adapt specific appearance
properties of the layout.

We have designed and built a tool to help users lay out
multiple view systems. Users an select a template-
layout, or edit the layout visually or control the layout
through a grammar (Figures 3, 4).

The grammar is used to save/load view layouts, and
each view is linked, such when the user controls the
wireframe editor the grammar updates.

We have developed and improved the prototypes with
heuristic feedback. We have demonstrated its use with
D3, and it has potential to be used with other
visualisation languages and tools.

We are still developing and improving LMV, and are
planning a more in-depth user evaluation.

Visualization tools, libraries and systems all help
users create visualisations. While there are many
ways to create a visualisation, controlling the layout of
multiple view systems is still difficult. This is not the
case for websites, where there are many design tools
to help users lay out their websites.

Why can we not have the same idea in visualisation?
Visualisation developers would likewise benefit from a
similar system. Templates to help users follow ‘typical’
layout strategies, and methods to graphically design
different layouts.

At the start of our research, we asked several
questions: How can we develop a system to help
visualisation users lay out their views? How can we
allow users to quickly lay out their views, and then
easily change their design? How do we map data to a
view and easily change the appearance of the layout
viewer?

Our motivation is to give the users the ability to create
juxtaposed view layouts in a simple and easy way. We
also wanted to allow users to create ‘typical’ layouts,
and consequently we drew on recent work by
Almaneea and Roberts [1,2], on quantifying and
identifying typical and frequent layout strategies.

1. AL-MANEEA H. M., ROBERTS J. C.: Study of Multiple View Layout Strategies in
Visualisation. In Posters presented at the IEEE Conference on Visualization (IEEE
VIS 2018), Berlin, Germany (Oct. 2018).
URL:http://ieeevis.org/year/2018/welcome.

2. AL-MANEEA H. M., ROBERTS J. C.: Towards quantifying multiple view layouts in
visualisation as seen from research publications. In 2019 IEEE Visualization
Conference (VIS) (Oct 2019), pp. 121–121. doi:10.1109/VISUAL.2019.8933655.

TOOL DESIGN
Our tool has four main view panels, each addressing
a different task: template viewer, grammar panel,
visualisation panel, and property panel. The template
viewer (shown in Figure 1) is the default first view,
and allows a pre-built design to be selected. Users
can also search and filter designs. After selecting a
starting template (which could be blank) the three-part
viewer opens.

The second screen has three main parts (Figure 2),
the grammar panel, visualisation editor, and property
panel. The grammar panel allows users to edit a
language description of the layout. The visualisation
editor shows either a wireframe layout editor (without
visualisations), or the visualisation view.

Figure 3: The grammar panel, the basic idea is based
on hierarchical cuts. Cut one view horizontally (h) or
vertically (v) to produce two views, and so on. E.g.,
h(50,50) creates an equal sized side-by-side view .
The value 50 is representative, h(20;20) would
provide the same result. Complex cuts can be easily
created, e.g., h(50v(75,25),50) creates layout with
three views, a long bottom view, with the top split
75% across .

Figure 4: Layout-Technique can quickly define a
nine-grid view ("laytech":"Grid3*3") or place six
views in a golden ratio with a centre in the
fourth quarter ("laytech":"GoldenRatioV6Q4").

The wireframe editor allows users to add, delete and
change the size and the position of the views, and snap
wireframe views together.

The grammar description is dynamically updated on the
left panel, allowing users to jump between grammar or
layout descriptions. The property panel allows users to
change the appearance of the layout (border width,
background colour, etc.) and how the visualisations and
data are mapped to panels.

Developers can fill in any visualisation technology they
require, for instance, a Google Map view, D3 view,
highcharts view, etc. E.g., the example in Figure 2 uses
D3.

