
EUROVIS 2019/ J. Madeiras Pereira and R. Raidou Poster

Accurate and Memory-Efficient GPU Ray-Casting Algorithm for
Volume Rendering Unstructured Grid Data

Gibeom Gu1 Duksu Kim2

1KISTI (Korea Institute of Science & Technology Information) 2KOREATECH (Korea University of Technology and Education)

Abstract
We present a novel GPU ray-casting algorithm for volume rendering unstructured grid data. We employ the per-pixel intersec-
tion list to guarantee accurate results for non-convex meshes. For efficient memory access for the lists on the GPU, we represent
the intersection lists for all faces as an array. To increase ray-coherency in a thread block and improve memory access efficiency,
we propose an image-tile based ray distribution method. Also, we found that a prior approach using a per-thread local buffer to
reduce redundant computation is not proper for recent GPUs. Instead, we use an on-demand calculation strategy that achieves
much better performance even when it allows duplicate computation. With a GPU, our method achieved up to 36.5 times higher
performance for the ray-casting process, and 18.1 times higher performance for the entire volume rendering, compared with
the Bunyk algorithm using a CPU core. Also, our approach showed up to 8.2 times higher performance than a GPU-based cell
projection method while generating more accurate rendering results.

1. Introduction

Direct volume rendering (DVR) is widely used in various fields in-
cluding medical imaging, scientific simulations, and so on. One of
the most popular algorithms for DVR (hereafter called ’volume ren-
dering’) is ray-casting due to its generality and accuracy. For a uni-
form grid, ray-casting is relatively easy to implement, and various
acceleration techniques have been well studied including parallel
algorithms using multi-core CPUs and GPUs [BW01].

Unlike the uniform grid, an unstructured grid has an irregular
structure, which makes it more complicated to perform ray-casting,
requiring a significant amount of computation. To handle this high
computational overhead, projection-based methods (e.g., cell pro-
jection) have been proposed [SLSM06,MMFE06,MA04,CICS05].
Cell projection methods can directly utilize the high polygon ras-
terization performance of the GPU, and shows much higher per-
formance than CPU-based ray-casting methods. However, the ren-
dering results can include artifacts depending on the accuracy of
visibility ordering. There have been attempts to implement the
ray-casting algorithm on the GPU to perform accurate volume
rendering [WKME03, BPCS06, MHDH07, MHDG11]. One recent
work [MRB∗08] proposed a GPU ray-casting algorithm (i.e., VF-
GPU) for a modern GPU architecture designed for GPGPU. Al-
though VF-GPU showed up to five times higher performance im-
provement than using a CPU, their approach does not guarantee
accurate results for non-convex meshes [Kim17]. Also, we found
that VF-GPU achieves a limited performance improvement on cur-
rent GPUs having different characteristics (e.g., L1/L2 caches and
much more cores) with the GPUs used when VF-GPU developed.

We present a novel GPU ray-casting method for volume render-
ing unstructured grid data. Our method has the following benefits:

(a) Bunyk [BKS97] (b) HAVS [CICS05] (c) Ours

Figure 1: These figures compare the rendering results of three al-
gorithms for Dataset 3, CFD simulation data for a car.

• Accurate: Unlike cell projection methods, our method generates
accurate rendering results (Fig. 1). Also, our method garantees
accurate results for non-convex meshes unlike VF-GPU.

• Memory and cache efficient: Our on-demand VDFI (view-
dependent face information) calculation strategy decreases both
memory and cache transactions with a higher cache hit ratio
while taking less memory space than VF-GPU using thread-local
VDFI buffers. Furthermore, our image-tile based ray distribution
method further improves cache utilization efficiency.

• High ray-casting performance: Our methods showed up to 8.2
times higher volume rendering performance than a GPU-based
cell projection method. Also, it achieved up to 36.5 times higher
ray-casting performance than a CPU-based method.

2. Our Approach

To guarantee accurate rendering results for non-convex meshes,
we employ the per-pixel intersection list used in Bunyk algo-
rithm [BKS97]. A straightforward approach for building the lists
is to use a linked-list for each pixel since it is easy to add a new
projected face to the lists with insertion sort [YHGT10]. However,

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

DOI: 10.2312/eurp.20191150 https://diglib.eg.orghttps://www.eg.org

https://doi.org/10.2312/eurp.20191150


Gibeom Gu & Duksu Kim / Accurate and Memory-Efficient GPU Ray-Casting Algorithm for Volume Rendering Unstructured Grid Data

Figure 2: These figures show the volume rendering results of our
method for Dataset 1 (left) and 2 (right).

Vertex Faces Tetra Boundary
Dataset 1 647,073 7,583,488 3,773,943 71,614
Dataset 2 7,320,994 83,385,432 41,257,368 1,741,392
Dataset 3 7,659,517 85,051,683 41,939,085 2,347,026

Table 1: This table shows the different statics of each benchmark.

the linked-list is not appropriate for the GPU since it leads to irreg-
ular memory access. Therefore, we represent the intersection lists
of all pixels as an array.

In our method, a thread block processes given ray groups. To
improve ray-coherency in a ray group, we propose a novel ray dis-
tribution method that groups rays from an image-tile, which is a
square image having a certain size. We use a 2D thread block hav-
ing the same size as an image-tile, and each thread handles a ray.
With the Night Profiler, we found that ray-casting with our distribu-
tion method took less L2 cache transactions (e.g., 21%) than using
a naive pixel-order ray distribution approach.

During the ray-casting process, we take an on-demand VDFI
computation strategy unlike a prior GPU ray-casting algorithm,
VF-GPU [MRB∗08]. Bunyk algorithm computes and stores VD-
FIs for all faces as a preprocessing to remove redundant calcula-
tion. To take the benefit of the Bunyk algorithm while reducing
the memory overhead, VF-GPU used a thread-local VDFI buffer
having a specific size. It maintains recently computed VDFIs, and
a thread reuses them if the required VDFI is in the buffer. How-
ever, we found that it is hard to take advantage of the buffers unless
the buffer size is large enough to guarantee a high hit ratio for all
threads. Since GPU threads run in a unit of warp (e.g., 32 threads),
the work of threads in the warp serialized if one or more threads in
a warp fail to find the required VDFI in the buffer. This warp diver-
gence invalidates the benefit of buffer hits for other threads, and the
cost of buffer handling becomes overhead. Unfortunately, it is hard
to reserve enough memory space for all buffers because we need
to launch hundreds of thousands of threads to fully utilize massive
parallelism of recent GPUs. In our experiments, we also found that
calculating VDFI whenever a ray meets a face achieves much bet-
ter performance than using thread-local buffers even though it can
result in duplicate computation. We observed that, compared with
the on-demand calculation, using buffers has up to 1.5 times more
memory access and up to 4.5 times more L2 cache transactions,
while decreasing L1 cache hit ratio by about 18%. As a result, our
method shows up to 3.9 times higher ray-casting performance com-
pared with using VDFI buffers (e.g., 256 slots) for Dataset 1, which
is a small dataset and we can reserve relatively large space for a
buffer. Based on these theoretical and experimental observations,
our method takes the on-demand VDFI calculation strategy.

(seconds) Bunyk Bunyk-Parallel HAVS Ours
Dataset 1 10.31 2.93 1.04 0.57
Dataset 2 50.65 15.52 12.44 4.83
Dataset 3 5.31 2.53 10.62 1.29

Table 2: This table shows the average rendering time (in seconds)
per frame for three benchmark datasets (Table 1).

0

10

20

30

40

Dataset 1 Dataset 2 Dataset 3

Im
p

ro
v

em
en

t 
o

v
er

 B
u

n
y

k
 

(t
im

es
)

Bunyk Bunyk-Parallel Ours

Figure 3: This figure shows the performance improvements for
ray-casting process of two algorithms over Bunyk (baseline).

3. Results

We implemented our method (Ours) in a system with a GPU
(Nvidia GTX 1080) and a quad-core CPU by using CUDA. To
compare the efficiency and accuracy of our approach, we also im-
plemented a Bunyk algorithm that uses a CPU core (Bunyk), a
CPU parallel Bunyk algorithm that uses four CPU cores (Bunyk-
Parallel) based on Kim [Kim17] by using OpenMP, and one of the
most well-known GPU-based cell projection method (HAVS) pro-
posed by Callahan et al. [CICS05].

Table 2 shows the average volume rendering time per frame of
the prior works and our method. Our method shows up to 18.1
and 5.1 times higher performance than Bunyk and Bunyk-Parallel,
respectively. HAVS, which uses the same GPU as ours, also ex-
hibited 2.8 and 1.2 times higher performance than Bunyk-Parallel
for Dataset 1 and 2, respectively. However, our method generally
achieved better performance (e.g., up to 8.2) than HAVS. In Dataset
3, cells are crowded in specific regions, and we can avoid unnec-
essary ray traversal with the early ray termination method [Lev88].
Therefore, for Dataset 3, even Bunyk-Parallel showed better perfor-
mance than HAVS, which needed to consider all faces. These results
validate the benefits of our approach.

Ray-casting performance: To check the benefit of our GPU
ray-casting algorithm, we measured the processing time just for the
ray-casting process, while excluding common processing time on
the CPU, like the intersection list construction time. As shown in
Fig. 3, our method achieved up to 36.5 times (25.5 times on aver-
age) higher ray-casting performance than Bunyk. More specifically,
ours showed much higher performance improvement for Dataset 3.
This is because rays visit a small ratio of faces during the actual ray-
casting process, and the preprocessing time for computing VDFIs
for all faces becomes overhead rather. These results demonstrate
the efficiency of our GPU ray-casting algorithm.

Acknowledgments

We would like to thank anonymous reviewers for their con-
structive feedbacks. Duksu Kim is a corresponding author, and
this work was supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIT)
(No.2018R1C1B5045551 and No.CMP-16-03-KISTI), and the Ko-
rea Institute of Science and Technology Information (KISTI).

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

78



Gibeom Gu & Duksu Kim / Accurate and Memory-Efficient GPU Ray-Casting Algorithm for Volume Rendering Unstructured Grid Data

References
[BKS97] BUNYK P., KAUFMAN A., SILVA C. T.: Simple, fast, and ro-

bust ray casting of irregular grids. In Scientific Visualization Conference,
1997 (1997), IEEE, pp. 30–30. 1

[BPCS06] BERNARDON F. F., PAGOT C. A., COMBA J. L., SILVA
C. T.: GPU-based tiled ray casting using depth peeling. Journal of
Graphics tools 11, 4 (2006), 1–16. 1

[BW01] BRODLIE K., WOOD J.: Recent advances in volume visual-
ization. In Computer Graphics Forum (2001), vol. 20, Wiley Online
Library, pp. 125–148. 1

[CICS05] CALLAHAN S. P., IKITS M., COMBA J. L. D., SILVA C. T.:
Hardware-assisted visibility sorting for unstructured volume render-
ing. IEEE Transactions on Visualization and Computer Graphics 11,
3 (2005), 285–295. 1, 2

[Kim17] KIM D.: Memory efficient parallel ray-casting algorithm for
unstructured grid volume rendering. In Proceedings of the Eurographic-
s/IEEE VGTC Conference on Visualization: Posters (2017), Eurograph-
ics Association, pp. 13–15. 1, 2

[Lev88] LEVOY M.: Display of surfaces from volume data. IEEE Com-
puter graphics and Applications 8, 3 (1988), 29–37. 2

[MA04] MORELAND K., ANGEL E.: A fast high accuracy volume ren-
derer for unstructured data. In 2004 IEEE Symposium on Volume Visual-
ization and Graphics (2004), IEEE, pp. 9–16. 1

[MHDG11] MUIGG P., HADWIGER M., DOLEISCH H., GROLLER E.:
Interactive volume visualization of general polyhedral grids. IEEE trans-
actions on visualization and computer graphics 17, 12 (2011), 2115–
2124. 1

[MHDH07] MUIGG P., HADWIGER M., DOLEISCH H., HAUSER H.:
Scalable hybrid unstructured and structured grid raycasting. IEEE Trans-
actions on Visualization and Computer Graphics 13, 6 (2007), 1592–
1599. 1

[MMFE06] MARROQUIM R., MAXIMO A., FARIAS R., ESPERANCA
C.: Gpu-based cell projection for interactive volume rendering. In 2006
19th Brazilian Symposium on Computer Graphics and Image Processing
(2006), IEEE, pp. 147–154. 1

[MRB∗08] MAXIMO A., RIBEIRO S., BENTES C., OLIVEIRA A. A.,
FARIAS R. C.: Memory efficient gpu-based ray casting for unstructured
volume rendering. In Volume Graphics (2008), pp. 155–162. 1, 2

[SLSM06] SHAREEF N., LEE T.-Y., SHEN H.-W., MUELLER K.: An
image-based modeling approach to gpu-based unstructured grid volume
rendering. In Proc. of Volume Graphics (2006), 31–38. 1

[WKME03] WEILER M., KRAUS M., MERZ M., ERTL T.: Hardware-
based ray casting for tetrahedral meshes. In IEEE Visualization, 2003.
VIS 2003. (2003), IEEE, pp. 333–340. 1

[YHGT10] YANG J. C., HENSLEY J., GRÜN H., THIBIEROZ N.: Real-
time concurrent linked list construction on the gpu. Computer Graphics
Forum 29, 4 (2010), 1297–1304. 1

c© 2019 The Author(s)
Eurographics Proceedings c© 2019 The Eurographics Association.

79




