A Descriptive Framework of Stories of Algorithms

Supplementary Material
J.Liem, R. Henkin, J. Wood, and C. Turkay
City, University of London

Example 1: Avisualintroduction to machine learning
Example 2: The Beginner's Guide to Dimensionality Reduction
Example 3:t-SNE explained in plain javascript

Example 4: Roads from Above

Legend

Elements of algorithms and models
BN Input

5 Logic

'7]l Parameters

] Output

Progress depiction
® Snapshot

e=Jp Continuous

Thematic focus

®/==P Focus
/ Support

@ OO Sequencingof parts of a story

Element linkage

< {?} Indication of sources and targets of transformations


http://www.r2d3.us/visual-intro-to-machine-learning-part-1/
https://idyll-lang.org/gallery/the-beginner-s-guide-to-dimensionality-reduction
https://observablehq.com/@nstrayer/t-sne-explained-in-plain-javascript
https://roadsfromabove.netlify.com/

Avisualintroduction to machine learning
http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

© 6 ©
o——-

—

‘SCatterplot matrix 1o show the reiation=nips. T
between each pair of dimensions. . .

There are ciearty patierns in the data, but the by i
Doundies for GINeATRG e & Not CDHCLS. et 1 R T I ]

i i

And now, machine T f
learning

ably
accassitle (tough rudimentary) machine
leaming method

!1”

"y

aceuracy mproves to 4%, ul.

.
L [
- Spliting cna layer deaper, the res's III
e
L

T test the frea's pertormance on new
data, wa need to appiy it fo data points
"

1daaty, the iee should pertom
smilariy on both known and unknown
deta.

44547 91.2% 60167

AR e 100% 30139

-

Explaining input records and features.
The progression is continuously
represented.

Building the decision tree.
The progression of building the tree is continuously
represented. The input has a supporting role.

Running the model with a training set and a test set.
Defined by the author, first the user can see how the
training setis used to run the model. Then an input
change has an effect on the output in an additional
model run.

The example follows a logic build up pattern structuring the explanation along the logical

order of algorithmic execution.


http://www.r2d3.us/visual-intro-to-machine-learning-part-1/

The Beginner's Guide to Dimensionality Reduction (1)
https://idyll-lang.org/gallery/the-beginner-s-guide-to-dimensionality-reduction

O 0 © 0 06
°
&
o o
® 5 o
o o

Explaining the records and features used as input.
A snapshot of the input that will be used in an
algorithm is presented.

Projecting ontoa line Explaining the logic and output of the algorithm.
A simple model maps the input (in a supporting role)

to the output. The text also includes an overview of
the logic used.

Foritse mathematicaly Inc ined R TSUM® [ xplaining the logic of the algorithm.

: i The input is still present in a supporting role, yetin
this case the output is not related to the algorithm.
The focus is on the textual explanation of the
algorithm.

y reduction can be form



https://idyll-lang.org/gallery/the-beginner-s-guide-to-dimensionality-reduction

The Beginner's Guide to Dimensionality Reduction (2)
https://idyll-lang.org/gallery/the-beginner-s-guide-to-dimensionality-reduction

O &6 © 0 06
- :
o o 2 ?
[

0 o o o

Embedding data in two dimensions

Explaining the relationship between input and
output.

A snapshot of the output can be modified by
interacting with the input. Here, an optional
interaction stage with the underlying mechanism
enables inspecting it (as seen in the orange target
above).

Explaining the logic of the algorithm.

Here it's possible to explore different
implementations of dimensionality reduction
algorithms. Input is present in a supporting role,
whereas interacting with the logic affects the output.

Principal component analysis
Pros:

« Relatively computationally cheap.
= Can save embedding model to then project new
data points into the reduced space.
Cons:

« Linear reduction limits information that can be
captured; not as discriminably custered as other
algorithms.

The story has a logic complexity build up pattern, where the complexity of the algorithm
increases from 1D, a simple 2D and finally the choice between three implementations.


https://idyll-lang.org/gallery/the-beginner-s-guide-to-dimensionality-reduction

t-SNE explainedin plain javascript (1)

https://observablehqg.com/@nstrayer/t-sne-explained-in-plain-javascript

O 0 © O
[ )

II‘ o0
L o —p

®
® &

P
0] —

With 50 total datapoints or observations, we can calculate the total number of .. . .
0 ll permutations: ’ Explaining how the input affects the algorithm.
o 50 Aninteractive slider helps with a textual explanation.

Set number of observations in your dataset =——————————( r———

Now if we're efficient about it and only look at the combinations of the data we can
cut this down. The combination equation is a bit more complicated...

n! 50
2(n—2)!  2.48!
.47 -48-49-50
2. (.47 -48)
4950

So we can see thart by taking advantage of this combination vs permutation
distinction we are saving ourselves 1275 total distance calculations. Kinda nice,
especially when the data gets larger.

What s it? :
g E Perplexity a measure related to the entropy (or dispersed-ness) of the system of Ex la na t lon Of aparam et er.
points. A valuable way of thinking about perplexity is to think of it as the effective A textual sha ps hot re prese nts the param eter.

number of neighbors for each point. Aka how many points that the distribution over
point i capture with a non-trivial probability.

The equation is relatively simple. (The calculations for p; ; are coming up next, so don't
worry about them yet)...

log(perplexity for point i) = (entropy for point i) = Z —pji log(p;i)
i

calc_entropy = f(probs)

function calc_entropy(probs){

return probs. reduce(
(sum, p) = sum - (p=le-7 ? p#loglp): @), per rok t ar €
L]

)

}

Actually running it Atextual explanation of the logic of the algorithm.

Now that we have functions for calculating the cost and gradient for a given
mapping we can (finally) proceed with the acrual algorithm.

The steps we need to do for t-SNE are as follows:

1. Randomly initialize mappings mappings: ¥j,;

2. Caleulate the cost and gradient for the current mapping

3. Use the gradient to nudge all our mappings to slightly better postions

4. Repeat 2 and 3 until we've lowered our cost function a satisfactory amount.

First we initialize a random starting position for the mappings (Y_new) and some
vectors to help with the gradient descent (which we have not gone into much but it
uses momentum and gain to increase performance).

We initialize the points purely randomly with a uniform random number generator,
but it would be interesting to compare the performance of initializations using
different distributions or patterns (such as the phylotaxisis initialization patterns
commonly used in network diagrams.



https://observablehq.com/@nstrayer/t-sne-explained-in-plain-javascript

t-SNE explained in plain javascript (2)

https://observablehqg.com/@nstrayer/t-sne-explained-in-plain-javascript

O 6 © 0O
II ¢ o6
o —p

®
® &

P
0] —

Visualizing the visualizer

We've done everything! Now we can step back and let the algorithm do s thing.

Aninteractive sandbox combining all elements.

bata Here, input and parameters can be modified with the
To demostrate the algorithm | have written a funcrion thar generates data in 10 . . . . -
dim:r:\jsinnscnmmds:mu.nﬂSnnﬂmwpm::d:luslns.T::poims:n::anm sliders, while the resu[tmg outputis prggress,ye[y
according to which cluster the belong to. i A | ) )

The plots shown in the visualization. The lower graphic also
Below are two plots, the above is the current position of the mappings at the current

iteration and below it is

rion né sl s he ot ncion platd e e T il e contains an output related to the algorithm used -
the Cost function.

Iteration: 199 o

BEEA

Cost

Early exageration switch off

tomentum changed 1o 0.5

Perplexity ValUE s e 12
Number of iterations to run algorithm s e’ 200

How many iterations 10 eXAEOrate s s 75

The story has a build up and sandbox pattern: all the elements are described progressively
with snapshots, concluding with a sandboxarea that allows readers to play around with the
elements and see the computation of the results.



https://observablehq.com/@nstrayer/t-sne-explained-in-plain-javascript

Roads from Above (1)

https://roadsfromabove.netlify.com/

© 6 © 0 6 O
noooo?o

#.

Explaining input and intermediate steps of the model.
Intwo visualisations the input imagery can be
compared to different layers of the neural network.

Algorithm overview.
e b b s e Gt e This part explains the basic idea of the algorithm,
including input (photo imagery), logic (convolutional
neural network) and the output (classification
result).

&

Comparing input and output.

A subset of the input pixels can be compared to their
output classification in form of snapshots using an
interactive swipe tool.

Explaining training set.
This part explains how the training data was
generated and labelled.



https://roadsfromabove.netlify.com/

Roads from Above (2)

https://roadsfromabove.netlify.com/

© 6 © 0 6 O
noooo_@’o

#.

From input to output.

An animation shows which input pixels result in
which output class. A use can follow the animation
for the training set or can select a new test area
interactively. The animation then scans the input
imagery from top to bottom selecting sample
locations, which move from left to right while being
applied to a class (watch onlinel). Compare to the
other parts the story this partis presentedina
continuous way.

for Training

Comparing input and output.
Again, using an interactive swipe tool the user can

compare the inputimagery with the output
classification (roads, non-road, low certainty) in the
manner of snapshots

The story follows an input-effect pattern, where each part of the story explains how the input
influences other elements such as intermediate stages of the model logic or the model
output.


https://roadsfromabove.netlify.com/

