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Abstract
The role of network topology on the dynamics in simulations that are executed on the network is a central question in the
field of network science. However, the influence of the topology is affected by the global dynamical simulation parameters. To
investigate this impact of the parameter settings, multiple simulation runs are executed with different settings. Moreover, since
the outcome of a single simulation run also depends on the randomly chosen start configurations, multiple runs with the same
settings are carried out, as well. We present a visual approach to analyze the role of topology in such an ensemble of simulation
ensembles. We use the dynamics of an excitable network implemented in the form of a coupled ordinary differential equation
(ODE) following the FitzHugh-Nagumo (FHN) model and modular network topologies.

1 Introduction

How topological structures of networks influence the dynamical
processes simulated on the networks has been a core question
for neuronal scientists and computational biology experts in re-
cent years [MHKH15, PS15, RRGS12, KLP∗17, BSS15, NHL16].
Many dynamical models, which can be either discrete [NHL16]
or continuous [MHKH15], have been studied to elucidate the rela-
tionship between connectivity structures and functional structures
of networks. In those models, parameter settings can determine
in which regimes the dynamics are influenced by topology of the
networks [KP03]. One of the most famous models that has been
investigated in that regard in computational neuroscience is the
FitzHugh-Nagumo model (FHN), which simulates neural dynam-
ics [MHKH15]. Depending on the parameter settings, the dynamics
of the network can be operated in three different regimes, namely
excitable, oscillatory, and bistable [KP03].

Besides those parameters which decide what regime the dy-
namics follow, there are other parameters confirmed to be de-
ciding factors on the outcome of the dynamics within a regime
[HJBS06]. The effect of those parameters on spatiotemporal pat-
terns on discrete models has been intensively studied recently
[MLHH08, NHL16, MLMH06]. In particular, the network activity
patterns at the global scale of the networks, such as the synchro-
nization of nodes within a module in their co-activation patterns or
the co-activation waves around hubs, have been examined at dif-
ferent levels of spontaneous parameters in a discrete dynamical
model [MLHH08, NHL16]. Similar studies have been conducted
with continuous dynamical models, but only at a local, not at a
global scale of the underlying network. For example, one study in-

vestigated the noise effect on the co-activation pattern of the FHN
model for a network of only two nodes [HJBS06]. To our knowl-
edge, the effect of the parameters such as noise at a global scale
has not been addressed yet for continuous models. We present a
visual analytics approach in analyzing simulation ensembles to fill
this gap. Using the noise parameter as an example, the effect of
such parameters on the role of topology for the dynamical patterns
at a global scale is studied systematically in an excitable regime of
the continuous ODE-based FHN model. Our approach is based on
using multiple coordinated views with multi-dimensional scaling
(MDS) plots for showing dynamical behavior within an ensemble
of simulations and a network visualization for showing the topol-
ogy. The dynamical and topological views are linked via interaction
mechanisms to allow for analytical reasoning.

2 Simulation Model

Given an undirected network (or graph), let D denote its adjacency
matrix. Then, the FHN dynamics operating on the network is de-
scribed in the form of an ODE of two nested variables, in which
variable x is called the membrane potential and y the recovery vari-
able [MHKH15]:{

τx
∂x(t)

∂t = γx(t)− x3(t)
3 − y(t)+ kDx(t)+σvx(t),

τy
∂y(t)

∂t = βy(t)+ x(t)+α+σvy(t).

Setting the global parameters α = 0.909,β = −0.391, and γ =
1.688 we perform simulations in an excitable regime. The time
scale parameters τx,τy, and the global coupling strength k, are ac-
cordingly set to 1.0, 100.0, and 0.025, respectively. Moreover, v(t)
stands for an uncorrelated Gaussian noise with zero mean and unit
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Figure 1: (a) The MDS projection of multiple noise intensity settings, the color encodes the value of noise intensity; the red point indicates
a selection. (b) The adjacency matrix visualization of the network with different colors for different modules. (c) The MDS projection of
dynamics in the noise intensity selected in (a); the color encodes which modules the corresponding nodes belong to in the network in (b).

variance whose amplitude is scaled by σ. To investigate the impact
of the noise parameter, multiple simulation runs are executed with
different values for σ in the range from 0 (no noise) to 0.0006325.
Moreover, since the outcome of a single simulation run also de-
pends on the randomly chosen start configurations, multiple runs
with the same noise settings have to be carried out, as well. After
performing all simulations, for each noise setting we have an en-
semble including time series of all nodes in the network for each
simulation run. Hence, the overall output can be described as an
ensemble (with different noise settings) of ensembles (with same
noise settings, but different random initial conditions). The topol-
ogy of the network remains the same for all simulation runs. We
are using a modular network with four modules as shown by the
different colors in the adjacency matrix in Figure 1(b).

3 Similarity Within and Between Ensembles

To measure similarity of nodes within one simulation run, we detect
spikes of activation in the time series and compute the co-activation
matrix [MHKH15], which encodes how frequently two nodes have
simultaneous excitation. For each ensemble of runs with the same
noise setting, we compute the average co-activation matrix of all
those runs. The resulting matrix provides the characteristic prop-
erty to evaluate how much dynamics are influenced by the topolog-
ical structures of the network. To compare two ensembles of differ-
ent noise settings, we interpret the respective average co-activation
matrices as vectors and compute their correlation. This can be done
pairwise for the ensembles of all the different noise settings lead-
ing to a correlation matrix, which captures the pairwise similarities
between all ensembles.

4 Visual Encoding and Interactive Analysis

To evaluate the influence of the network topology on the dynamics
for one noise setting, we use a topological and a coordinated dy-
namical view [NHL16]. The dynamical view is generated by com-
puting an MDS layout on the co-activation matrix. Distances in the
plot encode the similarity between the time series of the nodes (ren-
dered as points). For an ensemble of one noise setting, we use the
average co-activation matrix, see Figure 1(c). The topological view

shall encode the modular structure, which is best done using the
adjacency matrix, see Figure 1(b). To visualize the similarity be-
tween ensembles of different noise settings, we compute an MDS
layout on the correlation matrix described above. Here, distances
encode similarities between ensembles, which are shown as points
with color encoding the value of the noise parameter. This ensem-
ble view is shown in Figure 1(a).

The three views are coordinated allowing for selection in one
and highlighting in other views. Figure 1 shows how one ensemble
(red dot) is selected in the ensemble view (a) and shown in the other
views. In the topological view (b), the four modules were selected
and highlighted by color. The same colors are used in the dynamical
view (c) to investigate whether the topological groups also form
dynamical groups.

5 Results

When examining the ensemble view in Figure 1(a), the lowest noise
levels (≤ 0.0002) form a cluster (dark points on the right). Exam-
ining them in the dynamical view with the selections shown in the
topological view (b) revealed that topology has no effect, as basi-
cally the time series of all nodes synchronize. For medium-sized
noise levels (between 0.0002 and 0.0004694), the ensemble view
(a) also exhibits a cluster (upper medium-bright points) and the dy-
namical view (c) reveals a clear matching of topological and dy-
namical similarity, i.e., topology drives the dynamics. For large
noise levels (≥ 0.0004694), the dynamical behavior becomes ran-
dom, which can be observed by the ensembles forming again a clus-
ter (bright points on the lower left) in the ensemble view (a), while
the dynamical view shows no matching with the topology.

6 Conclusions

We have presented a visual analytics approach to evaluate the ef-
fect of noise on the influence of topological structures for excitable
network dynamics. We have observed that there are three groups of
ensembles and were able to interpret the result using coordinated
views.
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