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Abstract

Stenosis refers to the thinning of the inner surface (lumen) of vascular structures. Detecting stenoses and correctly estimating
their degree is crucial in clinical settings for proper treatment planning. Such a planning involves a visual assessment, which in
case of vascular structures is frequently based on 3D visual representations of the vessels. However, since vessel segmentation
is affected by various sources of errors and noise in the imaging and image processing pipeline, it is crucial to capture and
visually convey the uncertainty in a 3D visual representation. We propose a novel approach for visualizing the shape deviation
of different probability levels in vascular data, where the probability levels are computed from a probabilistic segmentation

approach.

1. Introduction

A main aspect of the clinical assessment of vascular structures is
to detect aneurysms or stenoses, i.e., abnormal dilations or narrow-
ings of its inner surface (lumen) [CMO3]. For treatment decisions,
the clinicians visually inspect the lumen extracted from 3D medi-
cal imaging data to detect and assess stenoses and their degree of
severity.

Unfortunately, there are many sources of uncertainty in the
medical visualization pipeline, like noise errors, imaging artifacts,
and assumptions made during image processing and segmenta-
tion, which negatively affect the correct extraction of the lumen
[RPHL14]. If a clinician is confronted with just one of those con-
tour lines, the treatment decision may vary significantly depending
on which one is shown. In fact, Lundstrom et al. [LLPYO07] re-
ported that a slight modification of the transfer function used for
volume visualization may result in a significantly different shape in
the vessels, which may lead to a wrong treatment. Hence, the vessel
visualization shall capture and convey the uncertainty in the vessel
shape.

We propose to traverse the probability space around the most
likely surface and thus capture different measures that reflect the
uncertainty. We then propose a non-obstructive 3D visualization
for easy detection of stenotic regions and an intuitive assessment of
the degree of uncertainty within the 3D setting.

In the context of medical visualization, different uncertainty vi-
sualization approaches as well as their limitations and challenges
have been discussed by Ristovski et al. [RPHL14]. Slice-based vi-
sualization reduce the uncertainty visualization task to a 2D prob-
lem, which can be effectively handled using color coding or nested
isolines [PRH10]. A common way to extend the 2D uncertainty
visualization approaches to 3D is to use animation [LLPY07] or
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transparency, e.g., using semi-transparency in volume rendering
or multiple nested transparent surfaces [PH10, PRW11, PRH10].
However, as animations, transparent surfaces, and volume render-
ing with transparency have perceptional issues [RPHL14], we try
to avoid using such methods and use opaque surface renderings
instead. Mapping the uncertainty using color and textures, we only
alter the hue and thus, do not impede the correct surface perception.

2. 3D Visual Encoding of Uncertainty

Let D be a spatial domain and f(p) describe the probability func-
tion that a point p € D belongs to a vessel structure (as com-
puted by a probabilistic segmentation algorithm). Our goal is to
visualize the probability function f(p) over a volumetric domain
DeR. Typically, one is interested in visualizing certain levels
L(c) :={p € D: f(p) = c}. For an understanding of how the lev-
els change with varying ¢, one needs to look into multiple levels.
Hence, one wants to understand the local change between multiple
nested surfaces.

Our approach is based on rendering a single opaque surface L(c)
from the probability function f, which allows for good shape and
depth perception. We then enhance this surface with a texture or a
color (hue) that is obtained by propagating information about f to
L(c). More precisely, we define a margin m and map the informa-
tion about interval [L(c —m),L(c +m)] to L(c). Assuming normal
distribution, we would pick ¢ = 0.5 and margin m = 0.25 as de-
fault values, which computes the 25% variability around the 50%
probability level (in analogy to box plots).

In order to propagate from level L(c;) to level L(c;), we have
to traverse probability space S := {p € D : f(p) € (c1,c2)}. With-
out loss of generality, we assume c; > c,. Starting from a point
p € L(cy), we have to find a matching point q € L(c;). Obvi-
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ously, defining q as being the closest point to p does not cap-
ture space S appropriately and can lead to undesired effects. In-
stead, we observe that S contains many intermediate levels L(c3)
with ¢3 € (c1,¢p).Ideally, the propagation traverses L(c3) in a di-
rection normal to the surface. If this holds true for all intermedi-
ate levels L(c3), then the curve that we traverse during propaga-
tion is generated such that its derivative is the gradient V of f.
Hence, starting at c¢(0) = p, we iteratively step through S by com-
puting c(t + At) = c(t) + At - V(c(t)) with sufficiently small step
size Ar. The iterative process stops once we cross level L(cy), i.e.,
if ¢(t + At) < c;. In this case, we compute the intersection of L(c;)
with the line from c¢(z) to ¢(z + Ar) to find the actual intersection
point of curve ¢ with level L(c,), which is the sought point q.

Having computed a matching point q € L(cy) for each point
p € L(c1) and the respective propagation curve c(t),t € [0,s] with
¢(0) = p and ¢(s) = q, we can map the extracted information onto
level L(cy). There are multiple properties of the propagation curve
that can be exploited to represent the traversed probability space.
The respective properties represent different aspects of the uncer-
tainty in the shape. First, the length of the propagation curve repre-
sents the distance between the probability levels. Second, the bend-
ing of the propagation curve can be captured by the angles between
surface normals of the traversed probability levels and represents
shape differences of the probability levels. Third, one can also cap-
ture the deformation between probability levels, i.e., the movement
in directions tangential to the probability levels or the propagation
curve, respectively. Since it was a priori not obvious, which of these
three properties are helpful for analyzing the shape variations, we
developed three visual encodings, one for each property, which we
explain as follows.

Color-coding Distance. The probability levels are close together
in case of low uncertainty and far apart in case of high uncertainty.
Hence, the distance between probability levels is supposingly a
good indicator of the degree of uncertainty. If we are interested in
a quantitative assessment of the amount of change between levels
L(cy) and L(c), we propose to use a color coding for that informa-
tion. The absolute change is captured by chq := [; c(r)d?, which we
estimate as chg := Y1 ||c((i 4+ 1)As) — c(iAs)||2, where n denotes
the number of Euler steps and c¢(nAs) = c¢(d). Since we know the
expected distance between different probability levels of the ves-
sels wherever the vessel is healthy and the segmentation does not
bring shape uncertainties (we denote it here as ¢, mqr), We can
normalize the absolute change to compute the relative change by
chy = (Cha - Chnormul)/(ChmaX - Chnarmal) with chr € [07 ”'

Color-coding Shape Difference. When uncertainty is low, one
probability level is close to an offset of another probability level,
i.e., the shape of the levels is close to identical. When uncertainty
is increased in an area, the shape of the levels changes, e.g., one
level starts bulging out. This shape difference can be captured by
investigating the change of the surface normals. We propose to es-
timate the difference in shape between levels L(c1) and L(c;) and
color-code that estimate. Starting with surface normal np, we find
the normal n,,,,4; s With maximal deviation from it along the pro-
jection path until we reach point ¢q. The shape difference is then
represented by s/ := Np - Dyyqqifs. Obviously, sh € [—1,1], where
sh =1 if there is no shape difference.

Texture-mapping Surface Distortion. Instead of capturing the
change in normal direction, one may also capture the change in
tangential directions, i.e., orthogonal to the normal. This is related
to showing how the surface parametrization of two levels change
and can be visualized by mapping a texture to one level and dis-
playing how the parametrized texture is distorted from one level
to the other. After projecting to point g of surface level L(c;), we
propagate the color from there to L(cy) (assuming the same surface
parametrization). The texture propagation leads to a regular texture
pattern on L(cy), if levels L(c1) and L(cy) are equidistant every-
where. Otherwise, it exhibits distortion, which conveys the level of
change between levels L(cy) and L(c3).

3. Results

The result of applying this approach to an MR angiography data
with synthetically added uncertain stenosis is shown in Figure 1. To
encode the amount of change between L(c —m) and L(c +m), we
execute the procedure from L(c) in both directions and sum the two
obtained distances, thus, showing the 25% variability around the
50% surface on a simulated uncertain stenotic region, see Figure
1. All our computations times are within a fraction of a second
and allow for an embedding in an interactive system. The texture
pattern (a) shows some clear distortions in the stenotic area, which
indicates that the segmentation is uncertain there, but certain in the
normal regions. The color-coded distance (b) shows that distances
between the probability levels is highest in the most stenotic part.
The color-coded shape difference (c) shows that the surface shape
changes most dramatically in the transition between normal and
stenotic region. In the stenotic region itself, the probability surfaces
are all aligned again. This reflects correctly the ground truth.
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Figure 1: (a) Texture distortion during projection. (b) Color-
coding traveled distance during projection. (c) Color-coding maxi-
mum normal difference during projection. Iso-luminance color map
shown below is used for not interfering with surface shading.
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4. Conclusions

We proposed a method for 3D vessel visualization where we show
a single opaque (most likely) vessel surface and we convey the in-
formation from the probability field around it to the surface itself.
We capture the uncertainties in terms of distance between the prob-
ability levels, the shape differences between the probability levels
as well as the deformations occuring during the propagation. We
visualize the first two uncertainties using color-coding, while for
the last one we use textures.
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