
Memory Efficient Parallel Ray-casting Algorithm for Unstructured
Grid Volume Rendering

Duksu Kim †

KISTI (Korea Institute of Science and Technology Information)

Abstract
We propose a novel memory efficient parallel ray casting algorithm for unstructured grid. To reduce the high memory consump-
tion of a previous work (i.e. Bunyk), we use a small size of local buffer for each thread to keep view dependent information
for most recently visited faces. To improve the utilization efficiency of a local buffer, we propose an index-based hash function
and a novel group traversal scheme. With our method, a small size buffer achieves a high hit ratio (i.e. utilization efficiency).
As a result, we achieved a compatible performance with Bunyk while using less than 1% of memory space for view dependent
face information. Also, our method shows even better performance than Bunyk for a large dataset since the buffer size is small
enough to utilize CPU caches and our traversal scheme maximally takes advantage of the early ray termination optimization.

1. Introduction

Direct volume rendering (DVR) is one of the most fundamental
visualization methods and widely used in various fields including
medical image, scientific simulations, and so on. Ray casting is the
most popular algorithm for DVR due to its generality and accu-
racy. Ray casting for uniform grid having regular structure is rel-
atively easy to implement and various acceleration techniques are
well studied including parallel algorithms using multi-core CPUs
and GPUs [BW01].

For unstructured grid, it is rather complex to perform ray cas-
ing and requires much computation. Bunyk et al. [BKS97] pro-
posed a fast ray casting algorithm for unstructured grid. This Bunyk
algorithm computes view dependent face information (VDFI)
for all faces as a pre-processing. With the full VDFI list, they
could perform ray traversal without duplicated computations and
achieved high performance improvement. However, it requires
much memory space and hard to apply to a large dataset. Riberio et
al. [RMB∗07] solved the memory overhead by using a small size
buffer instead of a full VDFI list. Their Face Driven Ray-Casting
(VF-Ray) method achieved a close performance with Bunyk by ex-
ploiting ray coherency that means nearby rays tend to visit similar
faces. Maximo et al. [MRB∗08] extended VF-Ray to a GPU paral-
lel algorithm (GPU VF-Ray) by allocating a buffer for each thread,
and it achieved up to five times faster performance than a serial al-
gorithm. However, it is still hard to apply to a large dataset with a
limited GPU memory since a massively parallel algorithm needs to
launch tens of thousands of threads and it consumes much memory
(e.g., a few gigabytes) even though each local buffer is small. Also,
it does not guarantee accurate results for non-convex meshes.

Advantage of Our Approach: We propose a novel memory
efficient parallel ray casting algorithm for unstructured grid. Our
method has following benefits.

† bluekdct@gmail.com

0

0.2

0.4

0.6

0.8

1

1 4 16 64 256 1024

H
it
 r

a
ti
o

 o
f 

V
D

F
I 

b
u

ff
e

r

VDFI Buffer size

Z-Hash IndexHash Ours

Dataset 2

0

0.2

0.4

0.6

0.8

1

1 4 16 64 256 1024

H
it
 r

a
ti
o
 o

f 
V

D
F

I 
b
u
ff
e
r

VDFI Buffer size

Z-Hash IndexHash Ours

Dataset 1

Figure 1: The left images show rendering results of two benchmark
datasets. The right graphs show the VDFI buffer hit ratio of three
different algorithms. Z-Hash is results of using the hash function
proposed by Maximo et al. [MRB∗08]. Index Hash is results with
our index-based hash function. Ours is results when we use Index
Hash with our group traversal algorithm.

1. Memory efficient: With our index-based hash function and a
novel group traversal algorithm, a small size buffer shows a high
utilization efficiency (Fig. 1). As a result, we can achieve a com-
patible performance with the original Bunyk algorithm while
using less than 1% memory for VDFI and about half memory
for whole process.

2. High performance for a large dataset: In some cases, our
method achieved even higher performance than Bunyk for a
large dataset (Fig. 3). It is because the size of buffer is small
enough to fit to CPU caches while showing a high hit ratio. Also,
our group traversal scheme is good for exploiting the early ray

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Eurographics Conference on Visualization (EuroVis), Posters Track (2017)
A. Puig Puig and T. Isenberg (Editors)

DOI: 10.2312/eurp.20171157

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurp.20171157


Duksu Kim / Memory Efficient Parallel Ray-casting Algorithm for Unstructured Grid Volume Rendering

Figure 2: These figures show rendering results of (a) the bunyk
algorithm [BKS97], (b) GPU VF-Ray [MRB∗08], and (c) our
method. We found that the result of GPU VF-Ray has artifacts for
the non-convex mesh.

termination optimization and it leads further performance im-
provement.

3. Accurate for non-convex mesh: With our memory efficient al-
gorithm, we can employ a ray-face intersection list like Bunyk.
This leads accurate results for non-convex meshes different with
GPU VF-Ray that does not maintain the intersection informa-
tion to save the limited memory of GPUs (Fig 2).

2. Our Approach

Our method is based on Bunyk algorithm and we allocate a
fixed size of local buffer for each thread similar with GPU VF-
Ray [MRB∗08]. Local buffers maintain VDFIs for most recently
visited faces and reuse them when the next ray meets the faces
(buffer hit). If the buffer does not have the VDFI for currently vis-
ited faces (buffer miss), it is computed and stored in the buffer.
Different with GPU VF-Ray, we simply groups rays starting from
nearby pixels in the image plane. We observed that this simple ap-
proach shows high ray coherency while avoiding expensive projec-
tion operations and point-in-face tests in VF-Ray. Each ray groups
is processed by a thread while using its local buffer.

To improve the utilization efficiency (i.e. hit ratio) of a small size
buffer, we present a novel hash function. We observed that depth
based hash function (Z-hash) used in VF-Ray causes congestion
to a specific region of a buffer when faces are closely residing in
a region. This drops the hit ratio of a buffer and it gets worse as
the size of buffer decreased. To avoid much conflicts in a small
buffer, we use the index of faces. We found that our index-based
hash function makes slots of a buffer are more evenly utilized and
we achieved up to 38% higher hit ratio than Z-hash when the buffer
size is small (e.g., 16) (Fig. 1).

To further improve efficiency of a small buffer, we propose a
novel traversal scheme, group traversal. In a ray-by-ray processing,
the hit ratio of a small buffer inevitably low since the buffer can
keep the VDFIs only for faces in far away after processing a ray.
To maximally exploiting ray coherency, we make rays in a group
traverse together step-by-step like a breath first traversal. In our
group traversal, a ray is handled right after a nearby ray visit the
nearest face and it may meet the same face with high probability.
In our benchmarks, it improves the hit ratio up to 41% compared
with ray-by-ray approach (Fig. 1).

3. Results

We have implemented our algorithm based on the Bunyk ray cast-
ing implementation of VTK [SML06]. We have optimized the
VTK’s implementation with an array-based data structure (VTKopt)

Vertex Faces Tetra VDFI

Dataset 1 # 647K 7,583K 3,773K 7,583K
Mem. 5 MB 364 MB 121 MB 546 MB

Dataset 2 # 7,659K 85,051K 41,939K 85,051K
Mem. 61 MB 4,082 MB 1,342 MB 6,124 MB

Table 1: This table shows the number of vertexes, faces, and tetra-
hedrons, and required memory space for the benchmark datasets.
The right most column shows the required memory space for the
full VDFI list.

0

2

4

6

8

10

1 4 16 64 256 1024

R
e

n
d

e
ri
n

g
 t
im

e
 (

s
e

c
o

n
d

s
) 

VDFI Buffer size

Dataset 1

0

1

2

3

4

5

6

7

1 4 16 64 256 1024

R
e

n
d

e
ri
n

g
 t
im

e
 (

s
e

c
o

n
d

s
) 

VDFI Buffer size

VTKopt

Parallel VF

Ours

Dataset 2

Figure 3: These graphs show the performance of three different
ray casting algorithms. For this experiment, we used eight CPU
threads on a machine consisting of two Intel hexa-core CPUs (2.4
GHz) with 128GB memory.

and we also have implemented Maximo. et al.’s method as a CPU
version (Parallel VF). Then we applied these algorithms to two dif-
ferent benchmark datasets (Table 1).

Fig. 3 shows the performance of previous works and our method.
Our method generally shows higher performance than Parallel VF
and achieves a compatible performance with VTKopt by using a
small size (e.g., 16-64 slots) buffer that takes less than 1% of mem-
ory compared with the full VDFI list. These results validate the
benefit of our memory efficient algorithm.

In some cases, our method outperformed than VTKopt for a large
data as shown in the right graph of Fig. 3. This is mainly because
buffers in our method are small enough to utilizing CPU caches
(e.g., L1 and L2) different with a huge full VDFI list. We also found
that our method is good for taking advantage of the early ray termi-
nation optimization [Lev90]. Ray casting algorithms usually takes
several steps before updating the color of a pixel to minimize con-
text switch overhead. On the other hand, our step-by-step group
traversal has proper workload for color integration after few steps
(e.g., one or two) and it can terminate traversal for a ray as soon as
the opacity of the pixel meets a threshold. We expect this perfor-
mance inversion becomes more clear as the size of data increased
and it also demonstrates that our method suitable for handling a
large dataset.

4. Future Work

Although we currently apply our approach only to multi-core
CPUs, our small and high efficient local buffer may fit to GPU ar-
chitectures having limited memory space. We would like to extend
our method to massively parallel algorithm on GPUs.

Acknowledgment

We would like to thank anonymous reviewers for their construc-
tive feedbacks. This work was supported by the National Research
Council of Science & Technology (NST) grant by the Korea gov-
ernment (MSIP) (CMP-16-03-KISTI).

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

14



Duksu Kim / Memory Efficient Parallel Ray-casting Algorithm for Unstructured Grid Volume Rendering

References
[BKS97] BUNYK P., KAUFMAN A., SILVA C. T.: Simple, fast, and ro-

bust ray casting of irregular grids. In Scientific Visualization Conference,
1997 (1997), IEEE, pp. 30–30. 1, 2

[BW01] BRODLIE K., WOOD J.: Recent advances in volume visual-
ization. In Computer Graphics Forum (2001), vol. 20, Wiley Online
Library, pp. 125–148. 1

[Lev90] LEVOY M.: Efficient ray tracing of volume data. ACM Transac-
tions on Graphics (TOG) 9, 3 (1990), 245–261. 2

[MRB∗08] MAXIMO A., RIBEIRO S., BENTES C., OLIVEIRA A. A.,
FARIAS R. C.: Memory efficient gpu-based ray casting for unstructured
volume rendering. In Volume Graphics (2008), pp. 155–162. 1, 2

[RMB∗07] RIBEIRO S., MAXIMO A., BENTES C., OLIVEIRA A.,
FARIAS R.: Memory-aware and efficient ray-casting algorithm. In
Computer Graphics and Image Processing, 2007. SIBGRAPI 2007. XX
Brazilian Symposium on (2007), IEEE, pp. 147–154. 1

[SML06] SCHROEDER W., MARTIN K. M., LORENSEN W. E.: The Vi-
sualization Toolkit (4th ed.): An Object-Oriented Approach to 3D Graph-
ics. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

15


