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Abstract

In this paper we present new techniques for extension and improvement of approaches to markerless 3D hand pose
estimation: A new algorithm for finger segmentation in point clouds of hands is presented which makes use of the
narrow and flexible shape of the fingers. The kinematic of a 3D hand model gets aligned to the geodesic paths of
the fingers which provides a very natural configuration of the model. Therefore a new technique for optimization
of those geodesic paths is introduced. Another benefit of this system is, that it’s only data resource is the depth
stream of a Kinect. So no additional hardware, markers or training data is needed. A first implementation of our
approach provides a proof for the new concepts and looks promising for further investigation.

Categories and Subject Descriptors (according to ACM CCS): 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; 1.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—

Virtual reality

1. Introduction and Related Work

Using hands is one of the most important types for interac-
tion with our environment. Therefore it is very natural - and
increases immersion - to use hands for interaction in virtual
environments as well. For this kind of interaction the hands
of the user have to be captured and their configurations have
to be evaluated - this process is called hand pose estimation.

In general the hand pose is defined by the global pose of
the hand and the local configuration of the fingers. As a first
step the approximate position of the hand has to be detected.
A common approach to this is to assume that the hand is the
closest object to the camera [LYTZ13,RYZ11]. A more gen-
eral and correct detection and tracking of the hand is a diffi-
cult problem itself [TSA12,JWC14]. Approaches to optical
hand pose estimation can be divided into two types: Systems
using markers and markerless systems. This work focuses
on the second type since this is more natural and therefore
increases immersion. In those markerless approaches data is
gathered directly (color, depth or both) by one or more sen-
sors. They can be separated into appearance based and model
based . In appearance based approaches, usually a function is
trained using labelled samples. This function maps recorded
features of an image to a certain hand pose. Romero et al.
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[RKK10] propose a system which matches the color image
of each frame with a large database of labelled hand poses.
This makes the system robust to occlusions and indepen-
dent of model parameters. On the other side such systems
need a big database which is expensive in creation and hand
poses maybe ambiguous due to the non-linearity of the map-
ping [LYTZ13]. Model based approaches usually generate
a 3D hand model which is fitted into the features extracted
from data obtained by a camera. For example Oikonomidis
etal. [OKA11] assume a joint parametric hand-object model
using 3D geometric primitives and then minimize an objec-
tive function over this model using color data. Its main draw-
back is the use of multiple cameras which makes the system
quite immobile. Ballan et al. [BTG12] make use of discrim-
inatively learned salient points on the fingers. They estimate
the hand pose by minimizing an objective function that also
takes into account edges, optical flow and collisions. Their
implementation works well for strong occlusions, but since
it uses color based features it depends on illumination. On
the contrary Liang et al. [LYTZ13] make use of depth data
obtained from a Kinect camera. Their proposed framework
basically consists of a hand parser, a fingertip detector and
an inverse kinematic solver. The hand parser assigns a label
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- namely the corresponding finger/hand part - to each pixel
in the depth image. This is done by comparing a 3D hand
model - whose pose was configured to the estimated pose
in the last frame - with the depth data of the current frame.
Fingertip detection is done by finding points with maximum
geodesic distance to the palm center. The IK solver can re-
construct the hand pose in the current frame.

This work follows the approach of markerless hand pose
estimation using only depth data obtained by a Kinect. It is
model based and also ties in with the idea of finding geodesic
maxima in a point cloud. Among others new approaches to
finger segmentation in point clouds and to local configura-
tion of the hand model are presented.

2. Hand Pose Estimation

Our system uses depth data of a Microsoft Kinect Xbox 360
and rough hand positions of a given hand tracking system as
input. An overview of the system can be found in Figure 1.
Single processing steps are described in the following sec-
tions. Development and evaluation was performed on desk-
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Figure 1: Overview of the hand pose estimation system.

top computer with a quad-core 2.8 GHz processor and 8 GB
RAM. The Kinect is placed next to the screen and slightly
tilted upwards, towards the user.

2.1. Preprocessing

At first a rectangular cropping is performed around the hand
in the depth image. This is done by using an axis aligned
rectangle which is centered at the position given by a hand
tracking system. Then distant points in the region of inter-
est (ROI) not belonging to the hand are filtered out using a
depth threshold. After that a binary image Bin from the ROI
is created. The next step is applying a distance transform
to Bin - the point with the largest distance to a non-hand-
point is defined as palm center. Unprojecting this point in 3D
space, the 3D palm center can be determined. Kinect data is
noisy itself and can get even noisier in certain environments.
Since erroneous data is treated as zero this can lead to small
wholes in Bin. This again has a quite big influence on the
result of the distance transform since a zero point in Bin re-
duces the distance for all surrounding points. Therefore the
morphological closing operation is applied to Bin before the
distance transform is conducted. So small holes which dis-
tort the result of the distance transform get filled. Depend-
ing on the current pose of the hand and the current camera
perspective there are possibly still parts of the forearm in

Bin (as seen in Figure 2a). To determine and remove these
parts, the Principal Component Analysis of Bin is utilized:
The first eigenvector is computed and its origin is set to the
found palm center. Next this vector is inverted and the point
of intersection s with the circle centered at the palm position
with radius r is computed, where r is the result of the dis-
tance transform at the palm center. Then the tangent to the
circle on point s is calculated and all points in the area be-
hind the tangent can be set to zero. This process is illustrated
in Figure 2b. The set of points which have been set to zero is
marked as grey area. The position of the carpus is set to the
intersection point. Unprojecting this point in 3D space, we
determine the 3D carpus position (green point in Figure 2c).

(a) (®) (©

Figure 2: Steps of forearm cropping and carpus detection in
a binary image of a hand.

2.2. Finger Segmentation

In the finger segmentation process the point cloud gets sepa-
rated into points of the single fingers and points of the hand
palm. The main differences between fingers and palm are
that the fingers form a narrower region and that they are flex-
ible. Therefore finger segmentation is basically done by a
three-step-procedure:

1. Filter the hand cloud by the number of neighbours in a
certain radius.

2. Filter the resulting cloud by the distance of each point to
the palm center and the plane described by the palm.

3. Conduct euclidean clustering on the filtered cloud.

In the first step we iterate through the hand point cloud (see
Figure 3a) and filter out each point whose number of neigh-
bours in a fixed radius is lower than the average number of
neighbours. This is already a rough approximation of the
segmentation but still contains points of the palm (see Fig-
ure 3b). Now points whose distances to the palm center or
to the plane in which the palm lays are over a threshold get
extracted and defined as finger points (see Figure 3c). In the
last step an euclidean clustering is applied to finger points to
get the point clusters of the single fingers. An exemplary re-
sult of the segmentation process is illustrated in Figure 3. As
one can see the result is not optimal but since only the dis-
tal parts of the fingers (containing the finger tips, cf. Section
2.3) are needed this approximation is precise enough for our
purposes.
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Figure 3: Steps of the finger segmentation process.

2.3. Fingertip Detection

Inspired by Liang et al. [LYT12] fingertip detection is per-
formed by searching for geodesic maxima in the point cloud
P of the hand. This idea was introduced in a more general
context by Plagemann et al. [PGKT10]. We assume that the
fingertip point (for each finger) is the point which has the
highest geodesic distance from the palm center.

Therefore a Graph G = {V,E} is build where V consist of
all points in P. Then the k nearest neighbours vg..v7 of each
v € V are determined and an Edge e = (v;,v) is added to E
for every neighbour if the euclidean distance d(v;, v) is under
a threshold t. Furthermore a weight = d(v;,v) is assigned
to every added edge. Since the resulting graph is not nec-
essarily connected an union-find algorithm is applied to the
graph for finding all connected components {Ky..K} }. Then
the connected component K. containing the carpus position
c is identified by iterating through the graph and compar-
ing point indices of the components. Until now we basically
followed the algorithm of Liang et al. [LYT12] but in the
following we can make use of the previously found finger
clusters Cy..C,,. We add the shortest possible edge from K. to
every finger cluster C;. These edges can be found by finding
the nearest neighbour of every point p € K, in each cluster
C;. We now have a set of n potential connecting edges for ev-
ery cluster, where n is the size of K.. Next the shortest edge
in each set is selected and it is added to E and weighted with
its length. As a result every cluster is reachable from c in the
graph. The next step is to locate the geodesic maximum (and
thus the fingertip) from c in each finger cluster C;. There-
fore the geodesic distance from the palm center ¢ to every
vertex v € C; UC)p is computed using Dijkstra’s shortest path
algorithm. The vertex with the highest geodesic distance is
selected as a fingertip candidate t;. Since the accuracy of the
path is only important for the fingers (and not for the palm),
downsampling can be performed to C, before performing
Dijkstra’s shortest path algorithm to improve performance.
Finally we reject those fingertips whose distance to ¢ is un-
der a certain threshold, since we assume they arise from er-
roneously found clusters in Section 2.2.

As shown in Figure 5a, the paths corresponding to the found
finger tips constitute a rough approximation of the real skele-
ton of the hand. Therefore we will use it for the estimation
of our local hand configuration (see Section 2.6). To improve
this approximation we apply a “centering” to each path: We
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create a k-d tree for the corresponding finger cluster and per-
form a range search with radius 1 cm for each point in the
path. Thus we get the n neighbouring points N from each
path point p; in the cluster. p; gets now replaced by the cen-
troid of N. In Figure 4 this process is illustrated with a sim-
plified 2D example: The yellow points are the points of the
cluster, red points are points of the path. The big circles con-
stitute the radii of the range search. In Figure 5 one can see

[©)
() (b)

Figure 4: 2D example path before (a) and after (b) centering.

the results of tip detection and path optimization on two real
frames.

(a) Raw paths.

(b) Paths after centering.

Figure 5: Geodesic paths and their optimizations.

2.4. The Hand Model

The design of the hand model is similar to real hand
anatomy: Fingers D1 to D4 consist of the four joints CMC,
MCP, PIP and DIP (see Figure 6). The thumb consists of
CMC, MCP and DIP. The distance between the joints is de-
fined by the lengths of the corresponding phalanges. For sim-
plification it is assumed that the hand is rigid in area of palm
and wrist. Thus the model can be reduced to use a single
CMC joint for all fingers, which is the base root joint for
the whole model. The eight carpal bones are not modelled.
The MCP joints are the root joints for the kinematic chain of
the fingers. Since the MC of the thumb is also flexible, the
CMC is used as root joint for the thumbs kinematic chain.
The fingertips are the end points of the kinematic chains. An
illustration of the model can be found in Figure 6.
According to Buryanov and Kotiuk [BK10] there are typical
relations of the lengths of the phalanges within each finger.
Therefore it is possible to compute the length of each pha-
lanx using these ratios and the finger lengths obtained in the
calibration step.

According to the joint angles stated by Aristidou and
Lasenby [AL10] we assume DIP of all fingers to have 1 DoF,
PIP of D1 to D4 have 1 DoF, MCP of D1 to D4 have 2 DoF,
MCP of DO has 1 DoF, CMC of D1 to D4 have 0 DoF and
MCM of DO has 2 DoF. So there are 20 DoF in the finger
joints. In addition to the 6 DoF of the global pose of the
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Bones: Distal Phalanx (DP), Medial Phalanx (MP), Proximal Pha-
lanx (PP), Metacarpal (MC)

Joints: Distal Interphaleangeal Joint (DIP), Proximal Inter-
phaleangeal Joint (PIP), Metacarpal Phaleangeal Joint (MCP),
Carpo Metacarpal Joint (CMC)

Figure 6: Hand model with joints and bones.

model (3 translational and 3 orientational). Thus the model
has 26 DoF overall.

2.5. Model Calibration

Before proceeding with global and local pose estimation,
the system has to be calibrated at least once. In particular
the calibration of the system comprises an initial detection
of the MCP positions, measurement of finger lengths and
initial computation of the hand pose. The calibration pro-
cess assumes that the whole hand is visible, fingers are fully
stretched and there is at least a small distance between all
fingers. Currently the calibration process is started manually
by the user.

MCP Detection: First the convex hull of the contours of
our binary hand image (red lines in Figure 7) is computed.
Next all convexity defects of the contour, i.e. all parts of the
contour which do not have a convex shape are located. In
each defect area the point with the largest distance to the
convex hull is taken. These points are marked blue in Fig-
ure 7. Now the points get successively connected, except the
longest distance crossing the palm. The centers of the con-
necting line segments are stored as MCP positions. To get the
MCP position for the thumb an additional line, connecting
the defect point between thumb and index with its next point
of the convex hull, is added. The resulting MCP positions
are marked pink in Figure 7. As one can see the convexity

Figure 7: Detection of MCP joints.

defect between thumb and index differs from the other ones.

Thus the MCP position of the index finger is corrected by
shifting it in the direction of the corresponding corner of the
convex hull. Unprojecting the MCP positions in the image
into 3D space, 3D MCP positions can be determined.

Finger Lengths: Since we assume that fingers are fully
stretched, finger lengths [y..l4 can be determined by com-
puting the distances between the previously detected MCP
positions my..my and corresponding finger tips #(..z4 as de-
tected in Section 2.3.

Initial Hand Pose: The global hand pose P is determined
by its position p and its orientation. The position is set to
the palm center as computed in Section 2.1. The orientation
is defined as a direction vector 4 and an up vector ii. We
assume that i is the normal of the hand, defined as a vector
perpendicular to the surface of the hand palm. Based on the
hand palm position it has to point to the back of the hand.
d is defined as the normalized direction from carpus ¢ (as
determined in Section 2.1) to p.

2.6. Model Configuration

Model Initializing: After the calibration phase the hand
model gets initialized. For this purpose the base root of the
model is set to the position of the initial hand pose. The root
joints of finger D1 to D4 are set to the MCP positions de-
tected during calibration. The remaining joints are not yet
set in the initializing phase.

Global Pose Estimation: As stated in Section 2.5, the
global pose P of the hand consists of position p, direction d
and up vector #. The initial pose is determined in the calibra-
tion phase. Since the hand palm is assumed to be rigid, the
global pose at frame; is estimated based on the global pose
at frame; _ | and the transformation (translation and rotation)
describing the movement of the hand palm from frame,_ to
frame;. This transformation is estimated using the Iterative
Closest Points (ICP) algorithm.

Now the model has to be fitted to the global pose and the
fingertips resp. their geodesic paths, found in Section 2.3.
Fitting the model to the global pose means that the base
root and the root joints of the model are transformed by the
transformation found for global pose estimation. Fitting the
model to the geodesic paths of the fingertips is done by per-
forming a kinematic alignment of the fingers of the model to
these paths.

Kinematic Alignment: As suggested above the model
has the following kinematic chains:

e MCP - PIP - DIP - Fingertip (fingers D1 to D4)
e CMC - MCP - DIP - Fingertip (finger DO)

The main idea of kinematic alignment is to align each kine-
matic chain (py..p;) to the corresponding geodesic path
found in Section 2.3. The alignment goes joint by joint, be-
ginning at the first non root joint. For each of these joints a
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point on the path has to be found whose distance to the previ-
ous joint is approximately equal to the length of the phalanx
we are currently aligning. This point can be found by iter-
ating through the path, beginning at the tip point, and com-
paring the distance of each point with the phalanxs lengths.
Actually this distance does possibly not correspond exactly
to the length of the phalanx, but this inaccuracy is minimal
enough (usually < 1 mm) to ignore it. Since the Kinect uses
structured light for retrieving depth information, a certain
surface area is needed to project the IR pattern on. If this
area is too small, depth data cannot be resolved. This can be
the case for very small objects or plane surfaces parallel to
the IR light beams. During our experiments we especially
noted missing depth data when a finger is pointed directly
to the device. In Figure 8 a sample frame where some depth
data of a finger is missing can be found. As a consequence,

(a) Front view. (b) Side view.

Figure 8: Example for missing depth data of small structures.

it is possible that the found tip is not the real fingertip but
lies anywhere on the finger and therefore the corresponding
geodesic path is shorter than the actual finger. Thus we have
to distinguish between the following cases:

1. Path length > length of kinematic chain.
2. Path length < length of kinematic chain.

a. One remaining nodes.
b. Multiple remaining nodes.

A 2D illustration of these cases can be found in Figure 9.
Case 1 is the regular one and we can proceed as mentioned
above. Formally we can compute the new position of each
(non root) node p; = p;_ +! - d;, where [ is the length of the
phalanx modelled by p;_; and p; and d; is the directional
9 —Pi—i

e —pii]
on the path whose distance to the previous joint is equal to

the length of the phalanx. In case 2 this only works as long
as the path length is greater than the partial kinematic chain
(po--p;)- If that is not the case the next link of the kinematic

vector of this phalanx: d; = where q, is the point

q4—Pi— If
) ] lao—pi |
there are now still nodes of the kinematic chain left (case

2b) we can not proceed as before, since there is no more
information about the real path. So the finger configuration
has to be estimated without a measurement of the distal part
of the finger. Typically the remaining nodes correspond to
the PIP and DIP joints. According to Lin et al. [LWHO0]
the bending of these joints is not independent: If the DIP

chain is aligned to the end of the path: di =

(© The Eurographics Association 2014.

joint is bent by an angle Op;p, the PIP joint must also be
bent by an angle 6p;p. The relation between the two angles
can be approximated by Op;p = % - Opzp. This relation does
not hold for 0;cp and Op;p in all types of gestures. Due to
the lack of a better approximation we assume only natural

grasping gestures for which this ratio should approximately
Pi—Pi—i

[p;—pi—il
trix which rotates a vector around axis d with angle 6. d is
the vector perpendicular to the plane described by the direc-

tion of node p;_ and the direction from p;_, to the current

be the same. J; = - R where R is a rotation ma-

—

value of p;: @ =d;_| X (p; —p;_) According to the angular
relations mentioned above 0 is % of the angle between the
o . a2 d-i(p—pi_y)
two vectors describing this plane: 6 = 5 - (AT =,
In Figure 9 the kinematic alignment of a simplified 2D ex-
ample is illustrated for each case: The white point denotes
the root joint of the kinematic chain. Yellow points are reg-
ular joints and the red point denotes the tip. The dotted line
is the geodesic path. The alignment processes joint by joint
from left to right. Figure 9a illustrates case 1, Figure 9b illus-
trates case 2a and Figure 9c illustrates case 2b. In Figure 10a

I} I} P o Z//
(a) Path length > length of kinematic chain.
o o } o f‘
(b) Path length < length of kinematic chain with
one remaining joint.

180° - 8pyp

(c) Path length < length of kinematic chain with
multiple remaining joints.

Figure 9: Different cases of the kinematic alignment.

a real example for regular alignment of the model of a finger
to the corresponding geodesic path can be seen. Figure 10b
shows an example of using estimated angles as described
above. In Figure 11 a fully fitted model of a real frame can
be found. To get a more realistic result (w.r.t human hand
anatomy), the angular ranges of the finger joints, as found
by Aristidou and Lasenby [AL10], can be incorporated. As
proposed by Aristidou and Lasenby [AL11] this can be done
by mapping the new joint position t to the region of possible
positions. This region is defined by the angular constraints
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Figure 10: Aligning bent index using only the geodesic path
(a) and using estimated angles (b).

(a) (b) (© ()]

Figure 11: Color image and views of the fitted hand model.

of each finger joint in left/right and up/down direction and is
generally shaped like an irregular cone. The new constrained
joint position t’ can be found by mapping t to this cone. In
Figure 12 a real world example of aligning pinky - with and
without using angular constraints - can be found.

(a) (d) (© ()]

Figure 12: Aligning bent pinky to geodesic path with (b, d)
and without (a, ¢) using constraints in front and side view.

3. Conclusion

This work presents a new approach to hand pose estima-
tion for natural 3D interaction, in immersive environments. It
builds on previously known approaches like finding geodesic
maxima for fingertip detection and presents new techniques
for finger segmentation in point clouds and for the kinematic
alignment of an 3D hand model. A main benefit of this work
is that its implementation only uses depth data of a Kinect as
a single resource. So there is no need for additional devices,
markers or expensive training material for machine learning
algorithms and illumination is no issue.

Our implementation provides a first proof for the new con-
cepts. Running on the hardware setup given in Section 2 it
performs a frame rate of 15 to 20 frames per second. The
main drawback currently is the low frame rate which leads
to erroneous result on fast movements. Another disadvan-
tage is the manual starting of the calibration process. For the

future optimizations of algorithms and implementation and
a quantitative evaluation of the results are planned. Another
Future work is porting the algorithms to work on a GPU.
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