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Abstract
We present a collision detection and force computation algorithm based on the Voxelmap-Pointshell Algorithm
which was integrated and evaluated in the physics engine Bullet. Our algorithm uses signed distance fields and
point-sphere trees and it is able to compute collision forces between arbitrary complex shapes at simulation
frequencies smaller than 1 msec. Utilizing sphere hierarchies, we are able to rapidly detect likely colliding areas,
while the point trees can be used for processing colliding regions in a level-of-detail manner. The integration into
the physics engine Bullet was performed inheriting interface classes provided in that framework. We compared
our algorithm with Bullet’s native GJK, GJK with convex decomposition, and GImpact, varying the resolution
and the scenarios. Our experiments show that our integrated algorithm performs with similar computation times
as the standard collision detection algorithms in Bullet if low resolutions are chosen. With high resolutions, our
algorithm outperforms Bullet’s native implementations and objects behave realistically.

Categories and Subject Descriptors (according to ACM CCS): Computing Methodologies [I.3.5]: Computational
Geometry and Object Modeling—Geometric algorithms, Object hierarchies; Computing Methodologies [I.3.7]:
Three-Dimensional Graphics and Realism—Animation, Virtual reality.

1. Introduction

Methods that perform collision detection and force compu-
tation are essential in virtual reality applications, namely for
interactive gaming, virtual prototyping, or assembly simu-
lations with force feedback [SWH∗12]. In the latter, many
available solutions try to find a trade-off between the high
computational speed (1 kHz) required by haptics for stable
and realistic interaction [BS02] and the obtained accuracy
by using simplified geometries. This might result in unreal-
istic simulations. Similarly, collision detection is still a bot-
tleneck for many realtime motion simulators; although the
scenarios are rendered at lower frequencies (60 Hz), reduced
representation of real objects are often used, such as primi-
tive shapes (e.g., spheres, boxes, etc.) or convex hulls.
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§ e-mail:jpedro.e.silva@gmail.com

The physics library Bullet [Cou14] provides with several
collision detection implementations able to handle simple
geometries and a powerful rigid body dynamics framework.
Yet, the performance of the library decreases when realistic
complex objects are used in the virtual scene. Therefore, the
implementation of a fast collision detection algorithm would
be useful, for instance, to enable haptic interactions and to
simulate realistic multibody environments.

In this work, we present our improvement of the well
known Voxelmap-Poinsthell (VPS) haptic rendering algo-
rithm [MPT99] and its integration into the physics engine
Bullet as a fast collision detection module. Our implemen-
tation uses point-sphere hierarchies and distance fields for
each colliding pair. Thanks to the sphere trees it is possi-
ble to recognize very fast possibly colliding areas. Moreover,
the point tree enables level-of-detail traverse of the surfaces,
being possible to provide with a fair contact manifold on a
established time budget, even for extremely non-convex ge-
ometries.
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This paper is organized as follows: In the next sections
we discuss related work and specify our contributions. In
Section 2, we describe the principles of the VPS algorithm
for both its classical penalty-based approach and hierarchical
collision detection. In Section3, the integration in Bullet is
explained. The evaluation and the results are then presented
in Section 4. Finally, in the last section, we present our con-
clusions and possible future improvements.

1.1. Related Work

One well-known approach for collision detection is the
Gilbert-Johnson-Keerthi (GJK) Algorithm [GJK88], which
computes distances between convex shapes using their
Minkowski sums. This algorithm was also extended to com-
pute penetration values [vdB01]; both approaches are im-
plemented in Bullet. Mamou and Ghorbel [MG09] find con-
vex patches in an initial non-convex object by hierarchically
clustering and decimating the mesh. The result is a convex
decomposition to which the GJK algorithm can be applied.
This approach is also implemented in Bullet and its perfor-
mance serves as a benchmark in our experiments (see Sec-
tion 4). It is possible to track the closest points by observing
the Voronoi regions of the mesh features, as done by Lin and
Canny [LC91]. In this approach, the high spatio-temporal
coherence of the collision detection problem has a decisive
relevance, since the tracking can be accelerated by assum-
ing that closest points in the next instant will be close to the
previous ones.

Many other collision detection approaches based on poly-
hedral models use bounding volume hierarchies in order to
accelerate the queries, for instance, axis aligned (AABB)
or object oriented bounding boxes (OBB) [GLM96]. Re-
don et al. [RKC02] also make use of OBB hierarchies upon
polygon soups and apply a continuous collision detection
method based on interval arithmetics. This approach is able
to compute the first contact instant. Continuous collision de-
tection is also implemented upon Minkowski sums in Bul-
let [Cou05].

The quadratic nature of multibody environments has also
been approached with sweep and prune methods [CLMP95].
These algorithms sort lower and upper limits of objects’
bounding boxes and discard collision pairs according to the
separating axis theorem, simplifying the quadratic problem.
Bullet has its own sweep and prune method in the broad-
phase collision detection (see Section 3).

Bullet provides interfaces to integrate third-party collision
detection modules. However, to the best of our knowledge,
our approach is the first to be published and available, apart
from GImpact [Leo07], which handles concave meshes and
is also tested in our experiments (see Section 4).

An extensive state-of-the-art compilation of haptic ren-
dering methods is given in [LOLO08]. A multi-resolution
representation of the objects that enables time-critical force

computation while assuring sensation preserving is built
in [OL03] out of polyhedral models. For that, objects are
hierarchically segmented in convex patches. One haptic ren-
dering algorithm that dispenses with polygonal models was
presented by Weller and Zachmann [WZ09]. This method
bounds objects from inside with non-overlapping spheres
which are organized into a hierarchy. This approach en-
ables proximity and intersection volume queries, which are
reached in haptic rates thanks to the fast sphere overlap
checks.

Distance and volume penetration data can be used
to compute penalty-based forces. Some other approaches
compute impulse-based forces out of contact informa-
tion [MC94], [CSC05], and it is possible to generate
constraint-based forces [ORC07]. The latter work introduces
a six-DoF generalization of the Gauss’ least constraint prin-
ciple often referred to as the God-Object method.

Our collision detection and force computation approach is
based on the Voxmap-Pointshell (VPS) Algorithm [MPT99],
[MPT06], which is originally a penalty-based haptic render-
ing algorithm. The great advantage of this algorithm is that it
is able to cope with arbitrarily complex geometries. A more
comprehensive description of the algorithm will be provided
in Section 2.1.

The VPS Algorithm was improved by Barbič and
James [BJ08] to support deformable objects. In that work,
hierarchical data structures and signed distance fields are
used. Similarly, we developed a haptic rendering algorithm
for rigid bodies based on the VPS Algorithm which also uses
hierarchies and distance fields. However, our data structures
are optimized for fast and accurate collision and proximity
queries rather than for deformation simulations.

Recently, constraint-based force computation has been
implemented to the VPS algorithm [RC13]. This work pro-
cesses streaming point-clouds, being possible to perform
haptic rendering with devices similar to the Kinect.

Important research has been conducted in the past years
regarding multibody dynamics simulation [Bar92], [Erl05],
[BETC12]. We focus on the contact computation problem
–which influences greatly the force and motion genera-
tion problem– in this work. Therefore, we have considered
physics engines’ evaluation works [SR06], [BB07], in order
to analyze and select a physics engine. In this line, a recent
evaluation [HWS∗12] showed after performing exhaustive
benchmarking tests amongst five publicly available engines
that Bullet behaves indeed robustly and ranks always in the
best positions –except when restitution scenarios are tested.
Due to these good results, and also due to the facts that it is a
popular, actively maintained engine with a clear nice-to-use
open source code, we decided to select this engine for our
work.
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1.2. Contributions

We can summarize the main contributions of our work as
follows:

• Implementation of a fast and accurate collision de-
tection method based on the haptic rendering algorithm
VPS. Our algorithm uses point-sphere hierarchies and
signed distance fields for each colliding pair, enabling fast
contact, distance, and penetration queries for arbitrarily
complex geometries. Although we are able to simultane-
ously generate penalty forces, we rather create a contact
manifold for later processing.

• Integration of our algorithm as a plugin into the physics
engine Bullet.

• Evaluation of our algorithm by comparing it with other
collision detection algorithms within Bullet, such as GJK,
GJK with convex decomposition, and GImpact. The re-
sults show that our algorithm is as fast as the compared
methods for low resolutions and several orders of magni-
tude faster –always below 1 ms— for higher resolutions.
Furthermore, objects display a realistic motion behavior.

• We enable haptic and motion rendering within the
physics engine Bullet.

Our implementation has been tested with Bullet 2.82, but
is easily portable to other versions and engines by using our
API. Additionally, the complementary video shows a sum-
mary of the above mentioned evaluation results.

2. Collision Detection and Force Computation
Algorithm

We base our collision detection and force computa-
tion method on the Voxelmap-Pointshell (VPS) Algo-
rithm [MPT99], [MPT06]. This approach uses two data
structures for each pair of colliding objects: (i) voxelmaps
or voxelized representations and (ii) pointshells or point-
sampled structures (see Figure 1).

Voxelmaps are 3D-grids in which each voxel contains a
discrete layer value that approximates the distance to the sur-
face [MPT06] (see Figure 3-(a)). In a similar fashion as in
[BJ08], we extended voxelmaps to contain floating point dis-
tance fields. However, we implemented a mixed data struc-
ture that contains both approximative layer values and real
distances, which can be locally interpolated in contact areas.
This approach allows for fast and accurate penetration and
distance computations free of aliasing artifacts while using
more modest memory requirements.

Pointshells are point-clouds that sample object surfaces,
having each point a normal pointing inwards of the ob-
ject. Similarly to [BJ08], we implemented a point-sphere
tree above the plain point-soup. However, we seek a down-
top building approach starting with a high point sampling
resolution where points are uniformly distributed. Adi-
tionally, we bound point clusters with minimal enclosing

spheres [FG04], in contrast to the approach in [BJ08], where
sphere centers are located on the object’s surface enabling
faster deformation computations. This hierarchy allows for
fast collision area localization by means of the sphere tree
and using high point sampling resolutions in a time-critical
manner.

After the offline generation of these haptic data structures,
the online collision query algorithm consists in traversing the
point-sphere hierarchy detecting the likely colliding regions
of the pointshell. The penetration or distance values are com-
puted for the points in this region, yielding penalty collision
forces. However, we provide the set of colliding points and
penetrations to Bullet in order to let the physics engine sim-
ulate the movement and collision forces.

An important advantage of algorithms that use voxelized
and point-sampled structures is that their speed depends
mainly on the sampling of the object and not on its geom-
etry. This is achieved by pre-computing (offline) as much
haptic information as possible of the objects in the scene
and storing it in our haptic data structures: voxelmaps and
pointshells.

In the following, we explain briefly the generation and
properties of our data structures (Section 2.1). Then, the
computation of distance, penetration and penalty forces is
explained (Section 2.2), and finally, several approaches for
hierarchy traversal during collision detection are presented
(Sections 2.3 and 2.4).

2.1. Data Structures

Given a triangle mesh, we first generate a layered voxelmap
and a plain point-soup representation of the objects in the
order of magnitude of seconds using the methods presented
in [SHPH08]. Then, we extend these data structures before
the online collision detection takes place.

2.1.1. Signed Distance Fields

Initially, the polygonal model is placed in an empty voxel
grid. Our voxelmaps are sized with the bounding box of the
object and they conform a regular grid. Each voxel is a cu-
bical cell of edge size or voxel size s. Additionally, each
voxel contains an integer that represents the distance from
the voxel center to the surface of the object. The triangles
of the initial mesh are checked for collision against the vox-
els in their bounding box using the Separating Axis Theo-
rem [AM05]. These overlapping voxels are assigned with a
voxel value v = 0. Then, using a modified scanline filling
algorithm [KS86], voxels in the nth inner layer are assigned
v = n, whereas voxels in the nth outer layer have v = −n.
Therefore, our layered voxelmap is a discrete signed dis-
tance field.

Once the layered voxelmap is created, we can additionally
build more accurate distance fields upon it. The first step
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(a) (b) (c) (d) (e)

Figure 1: Different representations of the Stanford Bunny: (a) Triangle mesh with 35606 vertices; (b) Several point tree levels
of the bunny coded with colors; (c) Two successive sphere tree levels of the bunny (the red transparent is the upper level); (d)
Voxelized representation of the bunny (surface voxels in red); (e) Voxelized representation of the bunny (first inner layer in
green).

consists in storing the closest point on the mesh for each
surface voxel. Next, we sweep all other voxels and detect
their closest surface voxel. This is achieved by moving in
the direction of the gradient of the layered voxelmap in the
analyzed voxel center until the first surface voxel is found.
Thus, for each voxel we have the approximate closest point
on the mesh.

We implemented two ways to encode these closest sur-
face points per voxel. In the first option, we build a support
voxelmap where the voxels contain double precision float-
ing point distance values. In the second encoding, we update
the existing voxelmap with the newly generated values by
converting them to integers. For that, the real distances (or
penetrations) d are truncated according to a precision value
p –the same for the whole voxelmap–. The approximative
distance (or penetration) d̃ can be obtained online with the
scaling factor λ , as it is shown in (1):

d = 1.61803
p = 3

}
→


v = 1618
p = 3
d̃ = vλ = v10−p = 1.618.

(1)

In both cases, the distance is signed, as in the layered
voxelmap: inner voxels get positive values (penetrations),
whereas outer voxels are assigned negative distances.

The main difference between all three maps is their size.
A layered voxelmap can be easily compressed, whereas the
scaled distance field and the double precision distance field
require increasingly bigger memory spaces. We choose the
representation and the resolution –i.e., voxel size s and pre-
cision p, if required– depending on the models and the sim-
ulations we want to perform.

All voxelmaps used for this work were generated within
less than 10 seconds and have a size of around 1 MB. Refer
to [SHPH08] for more information on generation time.

2.1.2. Point-Sphere Trees

In order to generate the plain pointshell, we require the ini-
tial triangle mesh and the layered voxelmap introduced in

the previous Section 2.1.1. Each triangle is visited during the
process and the surface voxel (v = 0) centers in its bounding
box are projected onto the triangle. The projected points are
considered valid if they are no closer than αs to the points
that were already generated for the analyzed triangle and the
neighbor triangles, being s the voxel size and α a constant
value close to

√
2. Our implementation yields a point cloud

with uniformly sampled 3D points. Next, we compute an in-
wards pointing normal vector for each point. For that, the
voxelmap neighborhood of the point is used: the gradient of
the distance field yields the normal vector. The final result
is a list of 6D unordered points that represent the original
mesh.

Once the plain pointshell is generated, we proceed with
the construction of the point-sphere tree. First, points are
grouped into clusters of K points according to their simi-
larity. In our current implementation this similarity criterion
is the Euclidean distance, but it is possible to observe the
geodesic distance and also the normals of the points. Note
that 1 ≤ K ≤ NP is a parameter selected by the user, being
NP the number of points in the plain pointshell. Figure 2-(a)
shows the clustering process with K = 4. The first point is
randomly chosen and the next most similar K points are lo-
cated in the neighborhood. A cluster of K elements is formed
using the initial point and the K−1 most similar –closest, in
our implementation– neighbors. The Kth most similar neigh-
bor point is used as an initial point for the next cluster. Be-
fore jumping to the next cluster, the point in the cluster most
similar to the average is selected as the parent point. This
process is repeated until all the elements belong to some
cluster. When this occurs, the algorithm starts grouping the
parent points of the previously defined clusters. The stop-
ping criterion of this recursion is met when we reach the top
level of the tree which contains only one cluster.

This sequential clustering approach can return clusters
containing points that are much further away from each other
than would otherwise be expected. This occurs because the
only criterion for starting to build the next cluster is find-
ing the closest point to the current cluster. To eliminate these
exceptions, we first tag all the points that lie further than a
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(a) (b)

Figure 2: (a) Point clustering: K most similar (closest) points
are grouped together, being K = 4 in this example; (b) Hier-
archized points –coded with color and size– and minimally
bounding spheres around point clusters.

threshold distance to their parent cluster point. When a point
is tagged, the center of mass of its cluster is recomputed and
we check whether the other points respect the threshold, and
they are tagged if it corresponds. After the clustering on a
certain level is finished, we sweep the tagged points and
compute the distance between them and all parent points
present in the level. If the minimum distance is under the
threshold, we assign the point to the corresponding cluster.
If not, the point conforms a cluster on its own, which con-
tains a unique element. Therefore, although we can expect
that the clusters have on average K children, this amount can
vary in practice. Note that each level of the point hierarchy
represents with points the whole object with a different res-
olution. A level l+1 has K times more points than its prede-
cessor l.

After building the point-tree, we create a sphere-tree upon
it. For that, we simply compute bounding spheres for each
cluster. In contrast to Barbič and James, our approach gen-
erates minimally bounding spheres [FG04] that contain all
the cluster points and all the children cluster points until
reaching the leaf of the processed cluster. Thus, we gener-
ate an optimally wrapped sphere-tree, similarly to [WZ09],
since each cluster sphere contains all its children points, but
not the children spheres. Figure 2-(b) shows the minimally
bounding spheres. This sphere structure enables rapidly lo-
cating likely collision areas performing sphere checks.

All pointshells used for this work were generated within
less than 20 seconds and have a size of around 2 MB. Refer
to [SHPH08] for more information on generation time.

2.2. Proximity Queries and Penalty-Based Force
Computation

This section presents the distance and penetration compu-
tation of the pointshell points without considering the point
traverse and selection problem. In order to have an insight
on our hierarchical traverse algorithm see Section 2.3. A
straightforward approach would be traversing all the points
in the pointshell [MPT99], in case the points are not ordered

in a tree. It is also possible to use GPGPU to select the likely
colliding points without the need of hierarchies, as done by
Rydén and Chizeck [RC13]. The authors place a bounding
box around the projection of the virtual tool (voxelmap) onto
the depth image (pointshell) in their implementation.
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Figure 3: (a) Voxelized and point-sampled objects in col-
lision. Each voxel has its voxel layer value (v) related to
its penetration in the voxelmap, and each point (Pi) its in-
wards pointing normal vector (ni). (b) Single point force (fi)
can be computed scaling the normal vector with its pene-
tration with the penalty-based force computation approach.
The cross products of forces and points yield torques. In
our implementation, we instead provide the contact man-
ifold to Bullet. (c) Representation of the contact manifold
({Pi,ni,V (Pi)}) provided to Bullet. The physics engine can
then compute the motion that separates the objects from col-
lision (H′ ←H).

During online collision detection, likely colliding points
(see Section 2.3) are checked for their voxel value v in the
voxelmap. Those points Pi with v(Pi) ≥ 0 are in solid vox-
els; their normal vectors ni(Pi) are summed, after being
weighted by their penetration in the voxelmap (V (Pi) ≥ 0),
yielding the total collision force ftot (see Figure 3). Torques ti
generated by colliding points are the cross product between
point coordinates Pi and forces fi, all magnitudes expressed
in the pointshell frame, with its origin in the center of mass.
These torques ti are then summed to compute the total torque
ttot. This process is summarized in (2) and (3):

fi =V (Pi)ni→ ftot = ∑
∀i|V (Pi)≥0

fi, (2)

ti = Pi× fi→ ttot = ∑
∀i|V (Pi)≥0

ti. (3)

The voxelmap distance or penetration function V (P) has
two components: global and local penetrations, as shown in
(4):

V (Pi) = niei︸︷︷︸
local

+v(Pi)σ︸ ︷︷ ︸
global

. (4)

The global penetration (v(P)σ ) is the value of the voxel

c© The Eurographics Association 2014.



Mikel Sagardia & Theodoros Stouraitis & João Lopes e Silva / Integration of a Haptic Rendering Algorithm into Bullet

in which the point lies multiplied either by the voxel size
(σ = s) or by the scaling factor (σ = λ ), both introduced in
Section 2.1.1. In case σ = λ , the global penetration is the ap-
proximate distance/penetration d̃. On the other hand, in case
σ = s, the global penetration indicates a coarser approxima-
tive depth of the point in the voxelmap. The local penetration
(niei) is the projection of the vector between the pointshell
point and the voxel center (ei = C−Pi) on the normal vector
of the point; hence, it represents the depth of the point within
the voxel. If the chosen resolution is high enough (s→ 0), the
influence of the local penetration decreases.

Note that when V (P)≤ 0, we are measuring distance, and
max(V (P = Q) ≤ 0) is the separation distance between the
objects, being Q the pointshell point which is closest to the
counterpart voxelmap object.

We can additionally refine the obtained penetra-
tion/distance value by linearly interpolating the floating
point values [SH13]. For that, a support floating point dis-
tance field which stores the real distance from the voxel cen-
ter (VR(C)) and the distance gradient in that point (∇VR) is
required (see Section 2.1). The interpolated value is then:

VR(P) =
1
s
[∇VR · (P−C)]+VR(C). (5)

The number of pointshell points that has to be checked
influences the collision computation time, whereas the vox-
elmap resolution (i.e., the voxel size) affects only the qual-
ity of the force magnitudes [WSM∗10]. Ideally higher
pointshell and voxelmap resolutions should be used only in
likely colliding areas.

Forces and torques generated according to (2) and (3)
need to be scaled due to the fact that their stiffness strongly
depends on the number of points that collide, and therefore,
on the pointshell resolution that is used; ideally a similar col-
lision force should be applied on a peg-like object that col-
lides with its end or its body on a plane.

2.3. Hierarchical Point Traverse

The real-time collision detection algorithm traverses the
sphere-point tree and computes the contact manifold (M),
the penalty forces (f, t), and the distance or penetration value
(δ ).

Algorithm 1 displays the hierarchical traverse; it is impor-
tant at this point, though, to define more formally a cluster c
according to Section 2.1.2:

c =
(

L,(R,X),{Pk,nk},{cc
k},c

p
)
, (6)

where

• L is the level where the cluster is, being the highest level
L = 1 and the level of the leaves L = NL,

• (R,X) are the radius R and the center X of the minimally
bounding sphere that contains all children points,

• {Pk,nk}K
k=1 are the K cluster points, being P1 the cluster

parent point,
• {cc

k}
K
k=1 are the addresses of the K children clusters,

• and cp is the address of the parent cluster.

Algorithm 1 is called once every cycle. As shown in there,
at the beginning of each cycle, the uppermost cluster with the
sphere that encloses all points is pushed to a FIFO-queue.
Then, the clusters of the queue are iteratively popped in
breadth-first manner. In case the popped cluster sphere is
colliding, the parent point of the cluster is checked for colli-
sion and the children clusters are pushed to the queue. In the
case we are processing a leaf cluster, we have to check all the
points in the cluster, not only the parent point (lines 23-33
in Algorithm 1). Whenever we detect that a point is collid-
ing, we update the forces as explained in Section 2.2 (lines
19-20 and 30-31 in Algorithm 1). Additionally, we add the
colliding point information to the contact manifold (lines 18
and 29 in Algorithm 1). Note that although we can compute
online the penalty forces, we provide Bullet only with geo-
metrical contact information –i.e., the contact manifold M–
and let this engine compute the corresponding forces and
motion. It is important to remark that although we are able
to provide more accurate contact information, Bullet accepts
contact manifolds of size 4 by default (see Section 3.2).

Figure 4 displays the hierarchical traverse with an exam-
ple. In that figure we can see primitives (spheres and points)
colored in blue when they are checked for collision and in
red when the collision check is positive. The three last levels
are displayed and only one cluster is considered in that mo-
ment in the queue –the uppest one in the figure. Spheres and
points are checked in a breadth-first manner starting from
this uppest cluster and the algorithm converges to the down
right part of the point cloud –where the collision actually
occurs– refining the point resolution at each level.

2.4. Segmented Hierarchical Traverse

The segmented or clustered hierarchical traverse is directly
related to the traverse explained in the previous Section 2.3.
The motivation of the modification done here comes from
the convex decomposition approach [MG09] implemented
in Bullet. This approach segments the object in m convex
hulls that preserve the shape of the object; then, the seg-
mented parts can be checked for collision with the GJK algo-
rithm [GJK88]. Each convex segment can deliver a contact
manifold with at most one contact point.

We implemented a similar approach in order to compare
our algorithm with the method based on convex decompo-
sition within Bullet, given that it yields very good results.
The user can offline select the value of m –we usually take
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Algorithm 1: (M, f, t, δ ) = collisionQuery(V , P)

Data: signed distance field V ∈ R1×NV , and
point-sphere hierarchy P = {c}NC

1 transformed
into distanced field coordinates.

Result: Contact manifold
M = {(P j,n j,V (P j))}NM

j=1 ∈ R7×NM , penalty
forces f ∈ R3 and torques t ∈ R3, and
distance/penetration value δ ∈ R1.

//Penalty force, torque, and distance/penetration1

f← 0, t← 0, δ ← 02

//Contact manifold3

M← /04

//FIFO queue that contains clusters to visit5

Q← /06

//Root cluster that bounds all pointshell points7

c1← P.getRootCluster()8

//Initialize queue9

Q.push(c1)10

while Q 6= /0 do11

c← Q.pop()12

if V (c.X)≤ c.R then13

//Sphere is colliding14

//Check parent point for collision15

if unchecked(c.P1) AND V (c.P1)≥ 0 then16

//Cluster parent point colliding17

M.add(c.P1,c.n1,V (c.P1))18

f← f+V (c.P1) · c.n119

t← t+ c.P1× f20

if V (c.P1)> δ then21

δ ←V (c.P1)22

//Check if c is a leaf cluster23

if c.L == NL then24

//Cluster c is leaf: check all other points25

for k = 2 to K do26

if V (c.Pk)≥ 0 then27

//Leaf point colliding28

M.add(c.Pk,c.nk,V (c.Pk))29

f← f+V (c.Pk) · c.nk30

t← t+ c.Pk× f31

if V (c.Pk)> δ then32

δ ←V (c.Pk)33

//Push children34

Q.push(c.{&cc
k}

K
k=1)35

else36

//Sphere is colliding37

//Update distance38

if V (c.X)− c.R > δ then39

δ ←V (c.X)− c.R40

return (M, f, t, δ )41

... ...

... ...

children clusters

cluster points

parent point

sphere
... ...

Figure 4: Breadth-first traverse of the point-sphere tree. This
figure illustrates the Algorithm 1. Blue spheres and points
represent checked primitives, while red primitives are the
colliding ones. The algorithm converges to the collision area
in the downer right part.

m ∼ 15–, i.e., the approximate number of segments of the
object, which corresponds to the number of contact mani-
folds to be generated and passed to Bullet. The algorithm
then looks at the level that contains a similar number of clus-
ters and sets it to be the reference segmentation level with m′

clusters Note that in the segmented collision detection the
size of the manifold is NM = m′. Next, Algorithm 1 is mod-
ified as follows:

• Line 2: we have m′ different penalty values f, t, and δ .
• Line 4: we have an array of m′ different contact manifolds
{M}m′

1 .
• Line 8: m′ clusters corresponding to the segmentation

level are popped.
• Lines 11-40: the queue is initialized m′ times, once for

each of the popped m′ clusters and the whole while loop
is executed for each of them.

• Lines 18 and 29: the contact point is added to the manifold
only if V (c.P)≤ δ ; since the new manifold supports only
one point, the existing point is replaced every time a point
is found in the segment that maximizes the penetration.

3. Integration into the Bullet Physics Engine

This section explains the integration of our algorithm into
the physics engine Bullet. First, a brief overview of the en-
gine’s architecture is given in order to explain the basic
workflow to which our algorithm had to be integrated. In
the second subsection, our new interface structures are de-
scribed.

3.1. Data Structures and Workflow in Bullet

The layer that controls the dynamics is above the collision
detection layer in Bullet. It is possible to perform only con-
tact computation, but we will consider the general case with
rigid body dynamics.
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The highest control interface that creates the vir-
tual world is btDiscreteDynamicsWorld. We
can setGravity() to it, call addRigidBody(),
and simulate the next instant in the world with
stepSimulation(). After each step, it is possible
to ask the btTransform of each rigid body.

Each btRigidBody consists of a btMotionState
and a btCollisionShape; this last class contains the ge-
ometry that is used for the collision detection.

The collision detection is divided in two phases in
Bullet: (i) the broadphase, in which pairs of objects
are quickly rejected based on the overlap between their
axis aligned bounding boxes and (ii) the narrowphase,
in which the selected collision detection algorithm is
called. The interfaces btBroadphaseInterface
and btCollisionDispatcher are used respec-
tively for these two steps. The latter contains the se-
lected btCollisionAlgorithm, which generates a
btPersistentManifold, that is, the list of object
points that conform the contact manifold and which is
passed to the motion solver.

Therefore, the contact manifold is the ultimate result of
the collision detection process, and the rigid body dynamics
simulation can work decoupled from the type of algorithm
used, provided the list of contact points. Hence, the goal of
our integration is to generate such a manifold as fast as pos-
sible, and with the best quality as possible.

Refer to [Cou14] for more detailed information on the
Bullet pipeline.

3.2. Integration Interfaces

We modified the following structures by adding references
to our algorithm: btBulletCollisionCommon.h,
btBroadphaseProxy, and btDefault-
CollisionConfiguration. The appropriate al-
gorithm is assigned to each shape type in the last interface.

As shown in Figure 5, we additionally inherited the ab-
stract collision shape interface and extended it to represent
the data structures introduced in Section 2. Since our algo-
rithm requires two different data structures for each collid-
ing pair, we defined a mixed structure containing both struc-
tures for each object. The structure which is used is selected
automatically online: the object with less points will be the
Pointshell. The inertia matrix and some other features
required by Bullet, such as bounding volumes, are automat-
ically created with our interfaces.

In the broadphase, bounding spheres of the highest
pointshell hierarchy level are checked against the distance
fields. Colliding pairs are handled by the dispatcher, which
calls our collision detection algorithm explained in Sec-
tion 2. The result of the query is a list of colliding points

btCollisionShape btCollisionAlgorithm

Pointshell Voxelmap Mixed VOXPTSCollisionAlgorithm

(a) (b)

Figure 5: (a) Integration of the three new collision
shapes into the pool of collision shapes provided
by Bullet: Pointshell, Voxelmap, and Mixed,
which contains the previous two. (b) Integration of the
VOXPTSCollisionAlgorithm by inheriting from Bul-
let’s superclass btCollisionAlgorithm.

with their respective normal vectors and penetration val-
ues ({(P,n(P),V (P))i}, see Figure 3). If cluster based col-
lision detection is performed (see Section 2.4), this list
is already segmented in m′ clusters and for each one a
btPersistentManifold is created with the point in the
cluster that has the deepest penetration value (max(V (P))).
In case the regular hierarchical traverse is carried out (see
Section 2.3), a unique btPersistentManifold is filled
with the contact points, starting with the deepest point, and
adding points so that the manifold area maximizes. Note that
the size of the manifold is limited to four points in Bullet,
although this constant value can be modified before compi-
lation.

Everything is implemented in C++, and we use CMake
for the building process, as it is done by Bullet. Altogether,
within the Bullet framework, three headers were modified
and four added, three source files were added, and four
CMake files were modified. The integration plug-in is in-
stalled with a simple script that makes a backup of the orig-
inal files in the Bullet repository and copies the new files
to their corresponding folders, allowing also uninstallation.
Bullet must be recompiled after the installation of our plug-
in.

4. Experiments and Results

In this section, we firstly show the results of simple experi-
ments to prove the validity of our algorithm, which is com-
pared to the default algorithms in Bullet. Afterwards, we
compare our algorithm with the fastest collision detection
algorithm in Bullet in more challenging scenarios. All tests
were carried out using a PC running SUSE Linux Enterprise
Edition 11 with an Intel Xeon CPU at 4x2.80 GHz.

4.1. Bouncing Ball

In this scenario we analyze the height of a sphere dropped
onto a plane as well as its maximum penetration. The sphere
with a radius of 0.5 m and a mass of 1 kg was dropped from a
height of 1 m. The gravity was considered to be 10 m/s2 and
the frequency of the simulation was of 200 Hz. Given that
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the experiment uses very simple objects, our algorithm will
generate at most at each time step one colliding point. For
this type of collision, Bullet calls a simple algorithm called
btSphereBoxCollisionAlgorithm.
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Figure 6: Height of the center of mass of the bouncing ball
(radius 0.5 m) using different coefficients of restitution c.
The pointshell of the sphere is composed of 275 (low reso-
lution) and 25880 (high resolution) points. The plane’s vox-
elmap has a resolution (voxel edge size) of 5 mm. The black
dashed line represents the ideal maximum height after the
first collision.

Table 1: Maximum penetration errors (mm) in the bouncing
ball experiment using Bullet and our algorithm. Two reso-
lutions are considered for our algorithm: coarse with 275
points and high with 25880 points.

Restitution
coefficient [-]

Penetration error (mm)

Bullet VPS low VPS high

0.1 42.5 6.8 3.5
0.5 42.5 9.5 4.0
0.9 42.5 20.1 19.2

The results show that the height profile of the center of
mass of the ball for our algorithm roughly matches the one
yielded by using Bullet’s algorithm. The discrepancies be-
tween our approach and Bullet’s are due to Bullet having
higher penetration errors (see Table 1), which delay the
rebound and increase the period of the bouncing. Having
pointshell objects with much higher resolutions seems to
provide lower penetration errors, but the benefits are not sub-
stantial.

Alongside the bouncing ball experiment, we also tested
stacking similar objects. Stacking spheres and disabling
freezing of the objects will cause them to collapse, even-
tually. As we increase the resolution of the pointshell repre-

sentation of the sphere the stack gets more and more stable.
Using a coarser sampling grid to generate the pointshells in-
trinsically adds some quantization noise to the modeled ob-
ject; that could explain its apparently more realistic behavior.

4.2. Stanford Bunny Tests

In this section we first compare our algorithm against other
available algorithms in Bullet varying the resolution of the
Stanford Bunny. Next, we focus on the fastest algorithm in
Bullet –based in the convex decomposition.

4.2.1. General Comparison with Bullet Algorithms
Varying Resolution

Figure 8 shows computation time (µs) and linear velocity
(m/s) diagrams produced by our algorithm, the Bullet’s con-
vex decomposition, and the Bullet’s GImpact, which is used
with arbitrary non-convex triangle meshes. During the ex-
periment a Stanford Bunny (35606 vertices) was dropped
onto a horizontal plane as shown in Figure 7.

(a) (b) (c) (d)

Figure 7: Successive frames of a Stanford Bunny dropped
onto a plane, shown at the attached video. This experiment
corresponds to the Sections 4.2.1 and 4.2.3, and the Fig-
ures 8 and 10. In the case of Figure 8, the frames match with
the following steps: (a) Step ∼ 50, (b) Step ∼ 175, (c) Step
∼ 200, and (d) Step ∼ 300.

During full operation (Figure 8, steps 250 to 600), our al-
gorithm is 137× faster than GImpact and requires 0.71 ms
for each check on average using the fine resolution (34892
points). The bunny is simplified to a convex hull composed
of only 42 vertices in the Bullet’s GJK implementation
and to 8 convex hulls with 100 vertices each in the con-
vex decomposition approach. With these conditions, GJK is
339× faster than our algorithm with a fine resolution (34892
points), but the convex decomposition is only 1.3× faster
than our algorithm with a coarse resolution (799 points).

4.2.2. Segmented Collision Detection

In this section we validate the segmented collision detection
method introduced in Section 2.4. Firstly, we will provide
evidence supporting the fact that the speed of the collision
detection is barely influenced when this method is applied.
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Figure 8: Computation time (µsec) and linear velocity (m/sec) curves in logarithmic scale for the testing scenario in which a
Stanford Bunny with 35606 vertices is dropped onto a plane (see Figure 7). The pointshell of the bunny is composed of 799
(coarse) and 35596 (fine) points, and the voxelmap with 306×305×282 voxels. The decomposed bunny consists of 8 convex
hulls with 100 vertices each. Note that Bullet de-activates collision detection under certain kinetic conditions causing sudden
steps in the computation time curves.

After that, we will show that with this method we can guar-
antee a more robust performance where low frequency simu-
lations (<50 Hz) are concerned. The following experiments
used a Stanford Bunny of low (799 points) and high res-
olutions (35596 points) with a mass of 1 kg and an inertia
diagonal matrix I = (4.79,4.46,6.38)× 10−3 u, which was
dropped from a height of 0.5 m onto a plane, as shown in
Figure 7.

We measured the time taken to detect a collision for 10
random initial rotation matrices on the bunny and selected
the average. This average was computed using the time in-
terval between step 200 and 600 when the algorithms were
detecting most collisions and were, thus, performing slower.
The number of points chosen for each run are the number of
clusters in a certain level L of the point-sphere tree, where
L = 1 represents the top level containing only one cluster.
Note that for L > 1, the number of segments are m′ = LK,
being K the number of children clusters; in our experiments,
we used K = 4. The results in Table 2 show that the compu-
tation times are very similar throughout all levels.

Table 2: Computation time (µsec) of our collision detection
algorithm when supplying different number of contact points
according to the level of the point-sphere tree selected for the
segmentation. Low resolution: 799 points; high resolution:
35596 points.

Res.
Level

L = 1 L = 2 L = 3 L = 4 L = 5

Low 102.2 102.1 104.2 102.3 102.8
High 1387.9 1477.5 1407.4 1449.6 1494.3

We performed the same experiment at frequencies lower

than 50 Hz using the Stanford Bunny and observed the pen-
etration errors. When performing the test for L = 1 (one col-
liding point) the algorithm was able to maintain the bunny
above the plane until we reached ∼ 30 Hz. Operating at a
lower frequency would lead to the bunny falling through the
plane after the initial collision was detected. The same ex-
periment was done using L = 4 and L = 5 and the bunny
was maintained above the plane for frequencies of simula-
tion down to ∼ 10 Hz, where the penetration errors were
minimized if a higher level L was chosen.

4.2.3. Comparison with the Convex Decomposition

According to our experience, the fastest collision method in
Bullet for complex objects involves using the convex de-
composition method that segments the object into convex
patches [MG09] that can be independently checked for col-
lision using the GJK algorithm [GJK88]. In Figure 9, a com-
parison between the segmentation done by the convex de-
composition method and our clustering is presented. In this
section, we will compare the performance of our method
against the convex decomposition by analyzing the speed
of the algorithms, the physical behavior of the objects and
the accuracy of the colliding object used by both algorithms.
The experiments were conducted in the same conditions as
in the previous section.

Figure 10 shows the computation time (µsec) and the ki-
netic energy (J) of the bunny at each time step when using
our algorithm and Bullet’s convex decomposition. During
full operation time (between time steps 200 and 600), the
convex decomposition method and our algorithm have an av-
erage computation time of∼ 30 µsec and∼ 100 µsec (levels
L = 1,4, K = 4 number of children). Although convex de-
composition is little more than three times faster, our method
provides much more realistic physical behavior probably
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(a) (b) (c)

Figure 9: Different representations of the Stanford Bunny
used in the tests of Section 4.2.3: (a) Convex hull cre-
ated with Bullet; (b) Convex decomposition created by Bul-
let [MG09]; (c) Our segmented point representation encoded
by colors.

due to the fact that our sampling of the point cloud of the ob-
ject does not involve any approximation, but only a change
in the resolution. We observe that convex decomposition has
a worse visual performance because, for instance, when the
object rolls through the plane after the first collision, one can
see when the bunny transitions from being supported in one
facet of one of its convex segments to another facet. This
"discrete" transition does not occur in our algorithm, where
the rolling is much smoother.

5. Conclusions and Future Work

We presented the integration and evaluation of a haptic ren-
dering algorithm in the physics engine Bullet. Our algorithm
is based on the Voxelmap-Pointshell Algorithm, since it also
uses voxelmaps and pointshells. However, the improvements
we made on these data structures allow us for faster and

more accurate distance, penetration and penalty force com-
putation.

The integration into the physics engine Bullet was per-
formed inheriting interface classes provided in that frame-
work and we plan to make public the source code of our
plug-in.

Our experimental results show that, while achieving a
higher accuracy, this first integration of our presented hap-
tic rendering algorithm presents similar computation times
as the tested ones with low resolutions, whereas it outper-
forms them when the resolution is increased. Therefore, we
expect that our contributions could improve multibody con-
tact and movement computations, which are used in a wide
range of applications, such as gaming, robotics, or virtual
prototyping.

Future work will address, among other topics, modify-
ing the Bullet force constraint solver and extending a time-
critical approach of our algorithm to work with the Bullet
framework. Furthermore, we plan to automatically generate
our data structures within Bullet given a mesh, since cur-
rently these have to be created outside the physics engine.
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