
Conference and Exhibition of the European Association of Virtual and Augmented Reality (2014)
G. Zachmann, J. Perret, and A. Amditis (Editors)

Towards a new platform paradigm for synergetic Virtual
Environments

M. Hocke, S. Pena Serna & J. Wurster

ESI Software Germany GmbH

Abstract

Most of today’s Virtual Reality system architectures follow visualization-centric data paradigms, using hierar-
chical data structures typically containing static content. As one of the future’s - and even today’s - key com-
munication and collaboration tools, Virtual Reality is quickly developing into an integrator of heterogeneous
technologies and content. For instance, highly sophisticated software simulation technology exists today to enable
industrial users [KNC∗10] to apply the benefits of virtual prototyping throughout the challenging steps of the
product development process: Immersive Virtual Engineering has an enormous potential to deliver the engaging
work environment for today’s and future technical users delivering a fast, accessible and pertinent virtual model
that drives day to day engineering decisions - individually and/or collaboratively, from concept design to process
engineering and serviceability. Within this paper, we would like to point out some of the new challenges and their
consequences, suggesting new paradigms in system architecture design that will enable next generation software
platforms to handle the industry’s demands towards synergetic Virtual Environments.

1. Introduction

Most current Virtual Reality system architectures follow
visualization-centric data paradigms, using hierarchical data
structures typically containing static content. Years of exper-
tise invested both by research groups and commercial ven-
dors have resulted in a multitude of highly efficient, opti-
mized approaches available to solution providers and indus-
try users (e.g. [RS01]). Virtual Reality use cases such as ex-
ploration, simple data interaction and even multi-site collab-
oration therefore are handled well on reasonably complex
data. Requirements for synergetic virtual environments sup-
porting Immersive Virtual Engineering are emerging from
design and functionality prototyping, process planning, asset
management, commissioning, quality management to pro-
duction issue tracking. Synergetic virtual environments have
to handle the combined complexities of process engineer-
ing, highly interactive immersive workflows, computation-
ally intensive simulation results with heterogeneous, arbi-
trary added content in a collaborative virtual experience.

As an example of a visionary use case, consider an iso-
lated aspect of the product development cycle for a scooter.
During initial test production of an updated model, the first
series of completed products show engine peak torque per-

formance values below expectations, resulting in unaccept-
able product characteristics. Within an immersive environ-
ment, a group of engineers analyzes the problem using live
data streamed in from a parallel dyno testing run. Compar-
ing the actual performance values with data obtained from
a previously run flow simulation of the engine based on
the original construction data, the system highlights recent
changes in specification for all engine parts. As associated
process metadata is analyzed, a recent design change in a
third party part is displayed. The team of engineers reruns
the flow simulation based on the updated data, identifying a
gas flow change caused by the redesign as a result. Based on
the data and evidence at hand, the team issues a quality con-
trol defect notice containing complete documentation of the
change, the performance data obtained during the physical
product engine dyno run, the original revision specifications
of the third party part and a replacement request order with
the manufacturer of the third party part. The defect could
ultimately be found, analyzed, identified - and in a follow
up session even resolved and verified using one virtual work
environment and integrative process. Adding to the proven
benefits of Virtual Environments through improvements of
communication and workflow, this promises significant ad-

c© The Eurographics Association 2014.

DOI: 10.2312/eurovr.20141334

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovr.20141334

M. Hocke, S. Pena Serna & J. Wurster / Towards a new platform paradigm for synergetic Virtual Environments

ditional savings in time and cost through shorter, optimized
processes and workflows.

Within the afforded workflows, immersive Virtual Envi-
ronments have enormous potential to form the missing link
throughout the engineering process by leveraging their es-
tablished virtues in communication and collaboration, help-
ing to understand the complexities of process and workflow
interactions. Existing systems such as VRML [CB97] and its
successor X3D [Con13] focus on static, visualization data-
optimized structures and limit dynamics to predefined be-
haviors; thus the key aspects of dynamic behaviors - a flexi-
ble concept of time, process and parallelism - are either not
handled at all or are handled in an inefficient way. Aside
of these principal limitations, complexities and data sizes
associated with simulation results typically exceed the as-
sumptions for real time systems. While some visualization
systems specifically handle almost arbitrary amounts of data
using out of core techniques, these approaches might need to
be rethought to broaden the scope to other types of data. Out
of core techniques also lack when considering the dynamic
aspects of data and behavior required within an integration
platform design.

Contributions to integrated data will typically originate
from a multitude of foreign data models in multi-core and
multi-node systems, affording data handling that interprets
and continuously evaluates in parallel rather than traditional
approaches that just read any incoming data once, following
the legacy system process of reading in raw data, conversion
to a local model and visualization. Crossing the boundaries
of process- and machine-local data models is therefore an
important aspect of rethinking the Virtual Reality platform.

2. Multi-tiered dynamic data behavior

Following these new requirements for integrative software
systems, the main challenge is to enable and maintain par-
allel, dynamic behavior throughout the system. Therefore,
we introduce a new platform approach that adapts to the de-
scribed trend ranging from the generic requirements for soft-
ware architectures like maintainability and evolvability to
concrete concepts for an architecture fulfilling today’s indus-
trial needs in data handling. Additionally, our proposed sys-
tem approach uses parallelism to handle an arbitrary number
of data structures, aiming to achieve full interactivity and
responsiveness for the virtual environment regardless of sys-
tem load and process step. It exploits the idea of balanced
decentralization of asynchronous processing running in par-
allel between multiple instances, while minimizing the la-
tency and performance issues. Complementing the holistic
architectural considerations for dynamic behaviors in struc-
tures, the underlying representation of data needs to sustain
and support responsiveness of the system for arbitrary mass
change of any element property, e.g. through animation of
rigid body or individual vertex transformation. Besides sim-
ple parameter changes, we also need to consider complex

multi-property change such as topology-changing deforma-
tions of 3D objects through the result of real-time physics,
virtual human simulation or live exploration of numerical
simulation results (e.g. airflow or crash simulation). In this
paper we will primarily focus on the presentation of the two
main concepts: a) domain based data flow concept and b)
modular object model.

2.1. Domain based data flow concept

Software system architectures have been proposed that fo-
cus on basic functionality and introduce flexibility regarding
the rendering system and the user interface toolkit [SRH05]
or demonstrate how a Virtual Reality engine integrates
VR hardware and software within a graphics API [FK05].
These systems, however, define a more centralized view on
data models especially in terms of scene representation. Of
course, virtual environments have a certain set of data mod-
els that have to be processed from input to the user’s visual
perception as directly as possible. In [SRH05], the layered
system architecture introduces a so called Graphics Layer
that includes the mentioned data models but data integration
is not covered. In general such concepts are lacking inter-
faces for dynamically acquiring data as our visionary exam-
ple is showing. Other publications focus on creating a model
for data flow concepts. In [RL10] a classification of paral-
lelization methods and techniques is done. It defines implicit
methods as software development requirements that are of-
ten given by the programming layer as for example compil-
ers or programming languages. Explicit methods are based
on shared data while using concurrency. Consequently this
needs a deeper analysis of the data flow to manage synchro-
nization of threads. Therefore, data flow networks are intro-
duced in which nodes are containers of value holders and the
edges represent the flow of data. In [RL10] they show how
networks for data flow regarding an explicit method are cre-
ated and which heuristics are used to traverse the network
efficiently. The performance of such traversing techniques
including multi-threaded processing seems strongly depen-
dent on the quality of the selected network. Mapping data
flow to an equivalent graph was also investigated by [RS01].
Their method is, however, intended to handle data of track-
ing and multi-modal input. It is also about message passing
between nodes, parallelization of event handling and han-
dling synchronization transparently. The idea of paralleliza-
tion has also been covered early on, e.g. by [SGLS93], de-
scribing a decoupled simulation model to improve respon-
siveness in terms of user interaction. Decoupling is achieved
by identifying four kinds of separate processes: the master
process, responsible for interaction and geometric updates,
a computation process for the actual simulation and dedi-
cated client and server processes for device data exchange.
The concept to separate some parts of data flow by the prin-
ciple of client/server is also described in [MC13]. Although
the scene graph model is still a central part of this system,
flexible system design is realized by strictly separating pro-

c© The Eurographics Association 2014.

18

M. Hocke, S. Pena Serna & J. Wurster / Towards a new platform paradigm for synergetic Virtual Environments

ducers and consumers by communicating data changes over
a TCP/IP network. Decoupled data transfer inside the com-
ponents is not solved however. Handling multi-threading
transparently and exchanging data decoupled by implement-
ing the actor model is the concept in [FL08] to realize a
novel simulation core for intelligent virtual environments
(SCIVE). In addition the data flow is modeled on an abstrac-
tion level by semantic networks. This has the advantage to
be independent of any underlying programming language.
This system allows dynamic behavior but the correspond-
ing networks can get very complicated for large, complex
systems. Our proposed design paradim is similar to the ac-
tor model idea in [FL08], has decoupled communication and
its data flow is easy to design by connecting components of
value holders explicitly. Possible common multi-threading
issues should be minimized even if shared data models are
involved. The following sections introduce the concepts of
domains and data flow to meet the mentioned requirements.

2.1.1. Domains

There are considerable numbers of data models to be man-
aged when designing today’s Virtual Reality software. For
example, scene data, rendering specifics, simulation data and
application oriented parts as well as traditional and immer-
sive user interfaces. Concerning our visionary example, we
have a simulation acquisition thread for the engine dyno test-
ing that continuously tracks results. For comparison reasons,
a second dataset from a previous run is acquired in paral-
lel through a data access process. Following this work-flow,
one finds further possible data models, such as a metadata
handling process and potentially different scene representa-
tions that can be switched in the current view. Those struc-
tures have to be protected against corruption in a highly
multi-threaded environment, due to possible concurrent ac-
cess. Therefore, the aim of the architectural design is to min-
imize the coupling and to increase the concurrency. In gen-
eral, data models have very complex structures, so that addi-
tional locking mechanisms would make them more compli-
cated and almost unmanageable. Multi-threading problems
like deadlocks, race conditions etc. would have to be solved
and would be a recurring issue. The purpose of domains is
to deliver a simple solution and make the domain respon-
sible for guarding the data model instead of using thread-
safe objects. A domain is a well defined part of the soft-
ware architecture which has its own thread, data objects and
module instances. Domains with a shared data model con-
sist of generic objects, so-called operands, that they man-
age. No other thread may change them directly. While ev-
ery operand has its own implementation, a coherent directed
graph at least implicitly remains through referencing other
operands. Instead of direct access, operands are handled de-
coupled with the help of the data flow concept as described
in the following section.

2.1.2. Data flow

Concerning the domain concept, data changes are triggered
by queuing jobs, so-called operations, that are processed in-
side the domain thread. Writing to a data model is a time
consuming process and in previous more centralized ap-
proaches the resulting behavior is that threads have to wait
for accessing the data model because resources are already
locked by another thread. This also means waiting times
are not easily predictable as they strongly depend on ar-
bitrary long resource locking. The data flow concept does
not suffer from classical locking problems because synchro-
nization points are only happening inside a single queuing
mechanism where operations are entered for later process-
ing. Adding an operation to the queue only takes very little
effort as it only copies the reference. However, synchroniza-
tion still needs to be done and cannot be avoided.

Further optimizations can be achieved through managing
more than one queue and swapping them to reduce the col-
lision times of operation producers and their consumer to a
minimum. The result is a highly decoupled data model envi-
ronment that keeps typical multi-threading topics transpar-
ent in most of the cases. Any observed domain should in-
form other listening domains about its changed operands if
needed. This introduces a difficulty in maintaining decou-
pled domains, as handling data modifications usually causes
reading the data that has changed in the observed model. In
our proposed data flow concept, domains broadcast events
to the event loops of the observing domains with the cor-
responding data that has actually changed. This reduces the
synchronization overhead because event handling does not
need to acquire any lock for reading from the source domain
and decoupling can be maintained without threatening data
integrity.

Consider again our example, where the team is inspecting
the analyzed data with further information like metadata as-
sociated and simulation results from a previous run loaded
in parallel. This is a more complex process and costs a lot of
computation time. Additionally the flow simulation results
need to be frequently published to the scene and some ren-
dering instance as well. Undoubtedly this leads to latency in
showing the result. At the same time however, users want
to retain control e.g. by the user interface without being de-
pendent on this process of high effort. The aim is to reduce
the latency for the user with respect to the responsiveness of
the system. To lay the foundation for this, the domain con-
cept offers decoupling in all kinds of message passing, and
therefore we have the building-blocks to construct a highly
dynamic, responsive system.

Figure 1 shows an example of a typical basic setup of a
system for Virtual Reality that consist of a number of do-
mains interacting with each other. For simplicity, more ad-
vanced domains like the distribution domain are only out-
lined, and would also have all components shown in the
other domains.

c© The Eurographics Association 2014.

19

M. Hocke, S. Pena Serna & J. Wurster / Towards a new platform paradigm for synergetic Virtual Environments

Figure 1: Domain System

2.1.3. Flow Control

The concept of domains is to have decoupled data processing
by operations and events in domain threads. Without flow
control, the flow of data depends entirely on OS schedulers
which balance domain threads. However, uneven long peri-
ods of data processing in domains are natural behavior in
OS schedulers, which from the developer’s point of view
are non-deterministic. Consequently there is a risk of grow-
ing numbers of entries in message queues of domains. This
means that an unbalanced data flow causes buffer overflows,
with "Overflow" in this case meaning that this unbalanced
data processing is a continuous process and the number of
operations/events queued is increasing unceasingly. We will
need strategies to either reduce the likelihood of these situa-
tions or to avoid them entirely.

2.1.4. Flow control strategies

We want to focus on 3 basic strategies to cover data flow con-
trol respectively reducing possible high loads of redundant
messages in the intended system. The strategies are a) avoid
queuing, b) reduce load of data changes and c) delay queu-
ing of data changes. The solution for controlling data flow
is a mixture of all strategies that will minimize the problem
of growing memory usage in terms of increasing number of
operations/events in domain threads. Figure 2 shows a thor-
oughly realistic scenario where a tracked input device sam-
ples with high frequency. The system is in a state where the
tracked positions are mapped to the 3D user interface. Cre-
ating the operations and adding them to the corresponding
scene domain with the given frequency would produce a load
that cannot be handled. The situation would be that the scene
domain is processing the current transformation but does not
finish before the next change arrives. The first strategy fol-
lows the pattern that it should only be queued when it is pos-

sible to process the current job, otherwise the current thread
proceeds its run. Therefore, from the application’s point of
view, it makes sense to identify a sub-system of the whole
setup that is relevant for interactivity. An instance within the
distribution component that transports changes over a slow
network should not belong to it. In terms of the example in
Figure 2, the tracking device input thread would immedi-
ately go on sampling without queuing the transformation,
preferring concurrent and consistent results for as little as
possible latency and high responsiveness.

Figure 2: Avoiding queueing

With strategy a) the interactive sub-system is in a bal-
anced state, but the complete system contains domains that
are delayed because of high effort. To increase control, fur-
ther reduction of load is obtained as redundant packets can
be omitted and only the up-to-date packet reflects the current
state. This introduces an important precondition in particular
on how data is represented in the domain concept. All data
of operands should be absolute and not representing relative
change to the previous value. Eventually for our example re-
garding distribution, the domain can reduce the number of
elements in its queues e.g. by skipping transformation data
for an immersive user interface widget except for the most
recent entry.

The last presented strategy is a more coupled solution be-
cause it introduces some synchronization points in terms of
waiting situations. If a domain signals producers of high
loads that a certain threshold of queue entries has been
reached, producers will have to wait until there is a free
slot to proceed. Through concrete implementation this can
be anything from a smooth transition to a full stop to get rid
of the current load very fast. Strategy c) fits well for e.g. the
distribution scenario since it postpones the steady delay that
would occur in combination with the first strategy to a later
time, and with strategy b) it will even be a rare situation to
cope with.

c© The Eurographics Association 2014.

20

M. Hocke, S. Pena Serna & J. Wurster / Towards a new platform paradigm for synergetic Virtual Environments

2.2. Modular Object Model

In order to delimit the context, this section does not cover
the whole data model of a VR application, which is also re-
ferred to as the semantic model or the semantic description
(see Chevaillier et al. [CTB∗12], and Flotynski and Wal-
czak [FW13]). This section focuses on the part of the data
model related to the 3D object. For the sake of clarification,
we understand semantics as the meaning, which is inferred
from information and knowledge being available within a
specific context, and semantic enrichment as the mechanism
for enriching 3D objects with semantics ([PSSD∗11]). Con-
sequently, existent information and knowledge related to a
3D object ([SF09]), sometimes referred to as metadata, in-
clude: i) information related to its intrinsic structure, ii) in-
formation related to the meaning of the physical object rep-
resented by the 3D object, iii) information related to the dig-
ital provenance, and iv) knowledge related to the application
domain.

3D objects, seen as the digital representation of existing or
of to be potentially created physical objects, are composed
by 4 different characteristics: i) dimensions, ii) structure;
iii) functionality, and iv) context. All these characteristics
are represented by different models: a) geometric models,
b) material models, c), simulation models, and d) semantic
models, respectively. Every single model deals with dedi-
cated properties of the 3D object, for which a specific rep-
resentation and a corresponding interface are needed. These
properties cannot easily be considered in a synergetic man-
ner and their uncorrelated handling prevents the definition of
rich relationships. A Smart 3D Object needs to be aware of
and to correlate all properties (models), in order to smartly
interact within a given environment. To support the concepts
behind Smart 3D Objects, the traditional VR systems need
to be reevaluated (e.g. Whyte et al. [WBTM00]). Dynamic
behavior (e.g. Pena Serna et al. [PSSF11b]) such as the de-
formation of and object caused by a collision, the direct ma-
nipulation of an object by morphing its shape or the dynamic
streaming of geometric information demand the flexibility to
locally perform modifications and adaptations at geometric
and topological level (see Morse et al. [MBS11] and Brunton
et al. [BCM∗11]). The main categories behind the modular
object model are: a) geometry data, b) topology data, c) vi-
sualization data, and d) partition data (Figure 3).

2.2.1. Geometry Data

A 3D object might be described in different ways according
to the expected purpose. Complex 3D objects are difficult
to describe with a simple formulation, because of that the
description of a 3D object is usually a collection of simple
formulations for individual sets. In the engineering domain,
this is commonly achieved by means of combining geomet-
ric and topological descriptions. On the one hand, the geo-
metric description might be smooth or discrete, and it gov-
erns the form of the 3D object. On the other hand, the topo-
logical description deals with the existing relationship and

Figure 3: Modular Object Model

connectivity between the different sets. Although a 3D ob-
ject is only a digital representation of a physically or a digi-
tally born object, it finally embodies physical properties. The
geometry enables the computation of such physical proper-
ties within a set and the topology allows for assembling the
properties of the individual sets within the whole 3D object
(e.g. Pena Serna et el. [PSSSM09]).

In the context of virtual manufacturing and virtual engi-
neering, the geometry is given and it is therefore not cre-
ated; instead it is transformed, in order to meet the require-
ments behind the mathematical and numerical models of the
forthcoming process. In the engineering field, modeling has
a wider acceptance based on smooth representations (e.g. B-
Reps); other fields, for instance entertainment, are used to
modeling with smooth (e.g. subdivision surfaces) or also dis-
crete representations (polygonal meshes). In both cases, only
the surface of the 3D object is represented. In terms of sim-
ulation, discrete representations are currently more suitable
for numerical computations. In this context, a description of
the volume of the 3D object is required (e.g. tetrahedral /
hexahedral meshes), in order to better associate the material
properties and the expected functionality of the 3D object
represented through physical laws (refer to Pena Serna et
al. [PSSF10]). The machining operations are characterized
by employing a discrete surface representation in the STL
format (StereoLithography). The most common representa-
tion for geometry data in Virtual Reality are optimized for
static behavior and fast rendering (e.g. Rossignac [Ros96]
and Zachmann and Langetepe [ZL03]). Nevertheless, given
the requirement to enable dynamic behaviors, the geometry
data requires the capabilities to flexibly deal with the addi-
tion and removal of geometric definitions. Our current ideas
foresee the use of dynamic buffers with flags (Figure 4), indi-
cated unreferenced data and avoiding memory handling (see
Pena Serna et al. [PSSF11a]).

c© The Eurographics Association 2014.

21

M. Hocke, S. Pena Serna & J. Wurster / Towards a new platform paradigm for synergetic Virtual Environments

Figure 4: Geometry Data

2.2.2. Topology Data

In order to avoid the traversal of the whole 3D object and
to streamline the computation process for local properties
on demand, a querying interface is desired (refer to Kre-
mer et al. [KBK12] and Canino and De Floriani [CF13]).
The following concepts describe a topological data structure,
which could be used for different representation schemes
(e.g. B-Reps, meshes, subdivision). The main characteristics
are (see Pena Serna et al. [PSSF11a]): i) rule-based hierar-
chical topology, ii) parental relationship graph, and iii) in-
direct sibling loops. Rule-based Hierarchical Topology: the
topology of a 3D object consists of a hierarchical descrip-
tion of entities in different dimensions. Given that our 3D
objects live in R3, we describe the hierarchies of entities
from R3 to R0 as: Cell, Face, Edge, and Vertex; thus de-
composing the 3D object into orientable entities in every
dimension. Parental Relationship Graph: the decomposition
rules enable the establishment of intrinsic relationships, eas-
ing the development of the querying interface. These hier-
archies are structured, by means of creating a parental rela-
tionship graph, which indicates the relationship from the par-
ent to the direct children. Indirect Sibling Loops: in order to
store the relationships without increasing the use of memory
while still achieving fast access to the information, the ori-
ented loop formed by the children of the parent is indirectly
defined by the siblings within the loop. In a similar way as
in the geometry data, the topological entities can be flagged
to indicate that these are no referenced and to avoid perfor-
mance penalties. Moreover, topological entities of the same
dimension can horizontally be clustered into sets, which can
represent application-driven semantics (Figure 5).

2.2.3. Visualization Data

We understand visualization data as the set of informa-
tion, which is needed to generate a visually pleasing im-
age, but which is independent from the geometric represen-
tation. In this context, we consider normal and tangent di-

Figure 5: Topology Data

rections, colors, texture, and texture coordinates, among oth-
ers. The traditional approach to store and access this infor-
mation is tightly associated with the geometry representa-
tion itself. Nevertheless, the dynamic behaviors that current
use cases require demand for a more flexible storage and
accessing, which can be selected according to the applica-
tion needs (Figure 6). For very large data sets, the rapid ex-
ploration instead of the dynamic manipulation is expected.
Thus, a single-indexing approach with split vertices is ideal.
A highly dynamic scenario is best satisfied with a multi-
indexing strategy, which allows for manipulating geometric
and visualization data without handling sorting and splitting
operations. In case of an application with large and highly
dynamic conditions and with very strict requirements toward
memory and performance; the multi-indexing strategy can
be restricted to only integrated data.

Figure 6: Visualization Data

2.2.4. Spatial Data

Spatial querying is a procedure dedicated to searching within
a bounded collection of items being defined in R3. In our

c© The Eurographics Association 2014.

22

M. Hocke, S. Pena Serna & J. Wurster / Towards a new platform paradigm for synergetic Virtual Environments

context, the items within the collection are 3D objects, which
are hierarchically structured by means of a scene graph. On
the one hand, the acceleration structure underneath the scene
graph could be a bounding volume hierarchy, an object ori-
ented tree, etc. On the other hand, the acceleration structure
for the geometric representation could be a k-d-tree, a b-tree,
an octree, the direct geometry, etc. Hence, the spatial query
component should be flexible enough, in order to handle dif-
ferent acceleration structures. The spatial query component
is designed to independently handle the scene and the geom-
etry structure, according to the needs: a) highlighting or se-
lecting 3D objects, or b) highlighting or selecting elements.
Motivated by the principles of Open VDB [Mus13] and our
requirements for a dynamic behavior, we are currently con-
ceiving an acceleration structure based on shallow and wide
trees, which will allow us to rebuild individual branches
without affecting a big portion of it (Figure 7. These char-
acteristics will be complement by referring the leaves of the
tree to topological properties instead of geometric ones, in
order to minimize the amount of needed updates.

Figure 7: Spatial Data

3. Conclusion and Future Work

Early validation, review and testing throughout an integra-
tive product development process forms the key benefit
of next-generation synergetic virtual environments. While
providing exciting new possibilities, fully dynamic data
handling - interpreting heterogeneous data from arbitrary
sources in parallel - imposes a potentially disruptive require-
ment to existing virtual reality platform architectures. Within
this paper, we have proposed a new system modelling ap-
proach as groundwork for handling dynamic data behavior
throughout highly interactive immersive simulation applica-
tions. A fully furnished system based on the work presented
should be able to maintain and possibly improve typical
system responsiveness through specific high performance,
low latency paths. We have continued to illustrate consid-
erations towards a fully dynamic, extensible model for typ-
ical 3D data. Accompanying the implementation of a fully-
featured software platform based on the synergetic platform

paradigm, we would like to further explore the aspects of
crossing the system boundaries - dedicating further work to
interpretation of runtime remote data as well as synchroniza-
tion and distribution for interactive collaboration and remote
processing. Other topics to explore in future work would
consider approaches to reduce total system latency for vary-
ing domain input to output interactions.

References

[BCM∗11] BRUNTON R., COOLAHAN J., MORSE K. L.,
SCHLOMAN J., RIGGS B., SCRUDDER R.: LVC Architec-
ture Roadmap Implementation, Common Capabilities – Com-
mon Data Storage Formats. Progress Report NSAD-R-2011-022,
Johns Hopkins University, February 2011. 5

[CB97] CAREY R., BELL G.: The annotated VRML 2.0 reference
manual. Addison-Wesley Longman Ltd., 1997. 2

[CF13] CANINO D., FLORIANI L. D.: Representing simplicial
complexes with mangroves. In IMR (2013), pp. 465–483. 6

[Con13] CONSORTIUM W.: X3d standards for version v3.3. ISO
Standard ISO/IEC IS 19775-1:2013, Nov 2013. 2

[CTB∗12] CHEVAILLIER P., TRINH T., BARANGE M., LOOR
P. D., DEVILLERS F., SOLER J., QUERREC R.: Semantic mod-
eling of virtual environments using MASCARET. In 5th Work-
shop on Software Engineering and Architectures for Realtime In-
teractive Systems, SEARIS 2012, Costa Mesa, CA, USA, March
5, 2012 (2012), pp. 1–8. 5

[FK05] FELLMANN T., KAVAKLI M.: Vair: System architecture
of a generic virtual reality engine. In Computational Intelligence
for Modelling, Control and Automation, 2005 and International
Conference on Intelligent Agents, Web Technologies and Inter-
net Commerce, International Conference on (2005), vol. 2, IEEE,
pp. 501–506. 2

[FL08] FRÖHLICH C., LATOSCHIK M. E.: Incorporating the ac-
tor model into scive on an abstract semantic level. In Software
Engineering and Architectures for Realtime Interactive Systems
(SEARIS), proceedings of the IEEE Virtual Reality 2008 work-
shop (2008), pp. 61–64. 3

[FW13] FLOTYNSKI J., WALCZAK K.: Semantic multi-layered
design of interactive 3d presentations. In Proceedings of the
2013 Federated Conference on Computer Science and Informa-
tion Systems, Kraków, Poland, September 8-11, 2013. (2013),
pp. 541–548. 5

[KBK12] KREMER M., BOMMES D., KOBBELT L.: Openvol-
umemesh - a versatile index-based data structure for 3d polytopal
complexes. In Proceedings of the 21st International Meshing
Roundtable (Berlin, 2012), Jiao X., Weill J.-C., (Eds.), Springer-
Verlag, pp. 531–548. 6

[KNC∗10] KHALDI F. E., NI R., CULIERE P., ULLRICH P.,
ABOITIZ C. T.: Recent Integration Achievements in Virtual Pro-
totyping for the Automobile Industry. Tech. rep., ESI Group, May
2010. 1

[MBS11] MORSE K. L., BRUNTON R., SCHLOMAN J.: X3d –
3d manmade feature common data storage format. In Fall Simu-
lation Interoperability Workshop 2011 (Orlando, Florida, USA,
September 19–23 2011), 2011 Fall SIW, SISO, Curran Asso-
ciates, Inc., pp. 22–31. 5

[MC13] MALESHKOV S., CHOTROV D.: Affordable virtual real-
ity system architecture for representation of implicit object prop-
erties. CoRR abs/1308.5843 (2013). 2

c© The Eurographics Association 2014.

23

M. Hocke, S. Pena Serna & J. Wurster / Towards a new platform paradigm for synergetic Virtual Environments

[Mus13] MUSETH K.: Vdb: High-resolution sparse volumes with
dynamic topology. ACM Trans. Graph. 32, 3 (July 2013), 27:1–
27:22. 7

[PSSD∗11] PENA SERNA S., SCOPIGNO R., DOERR M.,
THEODORIDOU M., GEORGIS C., PONCHIO F., STORK A.:
3d-centered media linking and semantic enrichment through in-
tegrated searching, browsing, viewing and annotating. In Pro-
ceedings of the 12th International Conference on Virtual Real-
ity, Archaeology and Cultural Heritage (Aire-la-Ville, Switzer-
land, Switzerland, 2011), VAST’11, Eurographics Association,
pp. 89–96. 5

[PSSF10] PENA SERNA S., STORK A., FELLNER D. W.: Tetra-
hedral mesh-based embodiment design. In Proceedings of the
ASME International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference (New
York, NY, USA, August 2010), vol. 3 of IDETC CIE 2010,
ASME, pp. 131–140. 5

[PSSF11a] PENA SERNA S., STORK A., FELLNER D. W.: Con-
siderations toward a dynamic mesh data structure. In Proceed-
ings of the Eurographics Swedish Chapter Conference (Goslar,
Germany, November 2011), SIGRAD 2011, Eurographics Asso-
ciation, pp. 83–90. 5, 6

[PSSF11b] PENA SERNA S., STORK A., FELLNER D. W.: In-
teractive exploration of design variations. In Proceedings of the
NAFEMS World Congress: A World of Engineering Simulation:
Industrial Needs, Best Practice, Visions for the Future (Glasgow,
UK, May 2011), NWC 2011, NAFEMS, pp. 1–18. 5

[PSSSM09] PENA SERNA S., SILVA J., STORK A., MARCOS
A.: Neighboring-based linear system for dynamic meshes. In
Proceedings of the 6th Workshop in Virtual Reality Interactions
and Physical Simulations (Aire-la-Ville, Switzerland, Switzer-
land, 2009), VRIPHYS ’09, Eurographics Association, pp. 95–
103. 5

[RL10] REHFELD S., LATOSCHIK M. E.: A comparison of paral-
lelization methods for data flow networks. In Software Engineer-
ing and Architectures for Realtime Interactive Systems SEARIS,
proceedings of the IEEE Virtual Reality 2010 workshop (2010).
2

[Ros96] ROSSIGNAC J. R.: Computational representations of ge-
ometry. SIGGRAPH 96 Course, May 1996. 5

[RS01] REITMAYR G., SCHMALSTIEG D.: An open software
architecture for virtual reality interaction. In Proceedings of
the ACM symposium on Virtual reality software and technology
(2001), ACM, pp. 47–54. 1, 2

[SF09] SPAGNUOLO M., FALCIDIENO B.: 3d media and the se-
mantic web. IEEE Intelligent Systems 24, 2 (Mar. 2009), 90–96.

[SGLS93] SHAW C., GREEN M., LIANG J., SUN Y.: Decoupled
simulation in virtual reality with the mr toolkit. ACM Trans. Inf.
Syst. 11, 3 (July 1993), 287–317. 2

[SRH05] STEINICKE F., ROPINSKI T., HINRICHS K.: A generic
virtual reality software system’s architecture and application. In
Proceedings of the 2005 international conference on Augmented
tele-existence (2005), ACM, pp. 220–227. 2

[WBTM00] WHYTE J., BOUCHLAGHEM N., THORPE A., MC-
CAFFER R.: From cad to virtual reality: modelling approaches,
data exchange and interactive 3d building design tools. Journal
of Automation in Construction 10 (2000), 43–55. 5

[ZL03] ZACHMANN G., LANGETEPE E.: Geometric data struc-
tures for computer graphics. SIGGRAPH 03 Course, August
2003. 5

c© The Eurographics Association 2014.

24

