
EUROVIS 2018/ J. Johansson, F. Sadlo, and T. Schreck Short Paper

STEIN: speeding up evaluation activities with a Seamless Testing
Environment INtegrator

M. Angelini1 and G. Blasilli1 and S. Lenti1 and G. Santucci1

1Sapienza University of Rome, Rome, Italy

Abstract
The evaluation of an information visualization system is a complex activity, involving the understanding of both the visual-
ization itself and the process that it is meant to support. Moreover, if the evaluation activity includes a task based user study,
it requires a considerable effort, involving both conceptual (e.g., the definition of user tasks) and technical (e.g., logging of
the relevant user actions while using the system) aspects. The solution presented in this paper, STEIN (Seamless Testing En-
vironment INtegrator), allows integrating the system under evaluation with the questions that have been designed for the user
study, tracing the user’s activities and automatically collecting the user’s answers using the events that are generated while
interacting with the system. This results in a substantial reduction of the effort associated with technical activities, thus allow-
ing the evaluation designer to focus mainly on the conceptual aspects. A prototype of the system is available for download at
awareserver.dis.uniroma1.it:8080/stein.

CCS Concepts
•Human-centered computing → User studies; Visualization systems and tools; Visualization toolkits; Visualization design
and evaluation methods; Laboratory experiments; Visual analytics; Information visualization;

1. Introduction

The evaluation of information visualization systems is a complex
activity since it not only involves assessing the visualizations them-
selves, but also the complex processes supported by the systems.
Moreover, and this is the focus of the paper, if the evaluation in-
cludes a controlled experiment in which the user interacts with the
system by performing tasks (see, e.g., [LBI∗12]) and logs captur-
ing user’s actions (i.e., traces) (see, e.g., [IH01] or [HR00]), the
situation is even worse. Indeed, it is required to collect the user’s
answers and the related low level details (e.g., response time, traces,
etc.), further complicating the overall evaluation process. This pa-
per copes with this problem by presenting STEIN (Seamless Test-
ing Environment INtegrator) that allows integrating the system un-
der evaluation (target system, in what follows) with the questions
that have been designed for the user, tracing the user’s activities
and automatically collecting the user’s answers using the events
that are generated while interacting with the target system. After
having embedded the target system by specifying its URI, STEIN
allows the evaluation designer to easily extract relevant data types
and events from it and to relate them to the questions of the evalua-
tion and to the collected traces, thus supporting the main technical
aspects of a system evaluation. The same environment allows exe-
cuting the evaluation questions, automatically collecting user traces
and answers. The main characteristics of STEIN are:

• full integration of the target system within the testing environ-
ment;

• automatic extraction of data types and events by just interacting
with the target system;

• automatic traces collection of the events that have been selected
by the evaluation designer;

• definition of the answers of the questionnaire in terms of target
system data types;

• automatic answers collection through the user interactions with
the target system;

• centralized access to remotely execute the evaluation.

It is worth noting that the proposed solution is mainly a technique
for automating the execution of users’ tasks on the target system
collecting traces and answers, and we are not proposing it as an
evaluation methodology; nor we claim that users’ tasks and traces
are the unique or the best way for performing an evaluation ac-
tivity. Moreover, we do not assume that user’s answers are always
collectible by user’s interactions with the system and STEIN allows
also for getting answers directly from the user (e.g, a number, some
text, etc.). Indeed, even if this is not the reason why we have de-
veloped it, STEIN can easily accommodate any kind of traditional
textual questionnaire, using free text, or Likert and ratio scales (see,
e.g., NASA TLX [HS88]), by just defining the questions, the asso-
ciated scales, and the right answer intervals (or full text boxes for
textual questions).

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

DOI: 10.2312/eurovisshort.20181083

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20181083


M. Angelini et al. / STEIN: speeding up evaluation activities with a Seamless Testing Environment INtegrator

This paper presents the rationale, the technical solutions, and the
implementation of the STEIN system and it is structured as follows:
Section 2 discusses related proposals, Section 3 describes the pro-
posed system, Section 4 concludes the paper and highlights future
work.

2. Related Work

The work in [LBI∗12] discusses evaluation scenarios both for un-
derstanding data analysis processes and visualizations, and reviews
the methods to assess them (e.g., controlled experiment, log anal-
ysis, etc.). Several works have faced with this topic, dealing with
both general and specific aspects. The work in [Pla04] states how
usability studies and controlled experiments are state-of-the-art
evaluation methods but it points out the need to consider also other
evaluation approaches, while the work in [SP06] asserts that the ef-
ficacy of a visualization system can be evaluated based on the usage
of the system itself and expert users’ success in achieving their pro-
fessional goals. The purpose of the work in [Car08] is to increase
awareness of empirical research and to encourage thoughtful appli-
cation of a greater variety of evaluative research methodologies in
information visualization.

Regarding the collection of user interactions, the work in [HR00]
presents a survey on computer-aided techniques used by HCI re-
searchers to extract usability-related information from user inter-
face events. Vuillemot et al. in [VBT∗16] aim to raise awareness
of the potential of logging to improve visualization tools and their
evaluation, as well as paving the way for a long term research
agenda on the use of logs in information visualization, reporting
a lack of methodology to support this process and to use the results
consistently. The work in [PP02] presents a tool able to perform
intelligent analysis of Web browser logs using the information con-
tained in the user-defined task model of the application to evalu-
ate the usability of generic web sites. To the best of the authors’
knowledge the only two solutions that support a similar objective
with respect to STEIN are Interaction Trace Manager and VisSur-
vey.js. Interaction Trace Manager [FB15] aims at supporting the
collection of user interactions; it presents two main differences with
respect to STEIN: a) it supports only the collection of traces while
STEIN covers all the main aspects of the evaluation design and exe-
cution process, and b) its usage requires several low level activities
(e.g., software installation, library import, coding inside the eval-
uated system, and running a SQL server to store the data) while
STEIN requires only the URI of the system to execute the whole
process. VisSurvey.js [JR17] is a tool that allows to create a user
study of web-based systems rendering snapshots of the system into
the evaluation environment and allowing to control the flow of the
evaluation based on the answers given by the user; however, dif-
ferently from STEIN it does not allow to interact with the system
during the evaluation process.

3. Solution

The main goal of STEIN is to facilitate the evaluation process of
an information visualization system. The design of the evaluation
and the analysis of the collected results is out of the scope of this
paper that, indeed, aims at providing a tool that supports this pro-
cess leaving the evaluation designer free to structure the evaluation

according to her needs. Generally, a user study evaluation com-
prehends a questionnaire on which users report the answers to the
tasks they performed on the system, and the non trivial collection
of traces. Additionally, in many cases the target system and the en-
vironment to answer the questionnaire are disjointed, pushing the
user to switch context between them. In our opinion, this switch can
lead to disruption in the work-flow, errors due to distractions and
impacts the traces (e.g., answering time). The proposed solution
aims at providing a seamless integration between the target system
and the evaluation environment. STEIN supports the designer in
the whole process, from the evaluation design to the collection of
user traces, following the work-flow reported in Figure 1:

1. Target system embedding: to import the target system into
STEIN by providing its URI;

2. Evaluation design: to design the evaluation process, further
specified in:

• System data types collection: to select (high-level) entities
that the target system utilizes;

• System events collection: to select the events that will be
traced during the evaluation;

• Questionnaire design: to manage the questionnaire structure
and content;

• Evaluation testing: to test the effectiveness of the evaluation
environment during its creation;

3. Evaluation deploy: to distribute the evaluation and collect re-
sults, further specified in:

• Evaluation running: to perform the evaluation process;
• Tracing: to automatically collect users’ answers, related

events, and interactions with the target system.

Figure 1: STEIN main phases: after the embedding of the target
system, the designer extracts the needed information from it using
STEIN and arranges the questionnaire. While the users are con-
ducting the evaluation process, their answers and interactions are
recorded by STEIN.

For each of these phases, STEIN provides a view, where most
of them (both for the design and the deploy phases) are divided
into a main panel (on the left) that contains the target system and
a working panel (on the right) that manages the design choices in
the design phase and the questionnaire in the running phase (see
Figure 2).

3.1. System embedding

The first step is the integration of the target system into STEIN
through its URI. The target system is encapsulated into an iframe,

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

86



M. Angelini et al. / STEIN: speeding up evaluation activities with a Seamless Testing Environment INtegrator

Figure 2: STEIN question testing. The target system (ColorBrewer in this example) is embedded in the main panel on the left (B) and the
working panel on the right (C) shows the question. The answer is automatically collected by selecting the scales in the target system. The
menu bar on the top (A) allows to navigate between the different phases of the evaluation design.

making it visible and interactive during the evaluation design in
order to automatically collect target system properties. This al-
lows conducting evaluations of not proprietary systems: for in-
stance, STEIN has been tested against the popular tool Color-
Brewer [HB03] that will constitute the use case for the rest of this
paper.

3.2. System data types collection

Once the target system has been encapsulated into STEIN, the next
step is the collection of its data types. A data type is a high level
domain-dependent entity defined into the target system; as an ex-
ample, in ColorBrewer a color scale is a data type. A data type
can be used to fill an answer in the questionnaire and can be traced.
STEIN collects all the data types defined in the target system during
a pre-processing phase in which the user is asked to interact with
the target system, and lists them in the right panel of the environ-
ment (see Figure 3). For expert users it is also possible to define ad-
ditional complex data types and/or edit existing ones, all within the
environment. Related to the use case, Figure 3 shows the collection
of the data type “ramp” (a scale) of ColorBrewer. The information
regarding the data type suggest that it is possible to consider the
ramp for the following phases. Through the use of STEIN we iden-
tified 4 different data types for ColorBrewer (number of classes,
scheme type, color system, and ramp).

3.3. System events collection

The next step is the collection of the events, which the designer
wants to trace. Similar to data types collection, STEIN lists the col-

Figure 3: System data types collection. Identification of the data
type “ramp” suggested by STEIN and obtained by interacting with
a color scale (a ramp) in the target system.

lected events and their characteristics in the right panel. A generic
event can have (e.g., click on a scale) or not (e.g., click on “color-
blind safe” check-box) an associated data type. STEIN is able to
collect both event types, suggesting, if appropriate, a link to pre-
viously collected data types. When an event is notified to the de-
signer, s/he decides whether to add it to the list, optionally cus-
tomizing the linked data type and the function to catch the event
suggested by STEIN. All the events with an associated data type
can be used within the seamless answering mechanism, automat-
ically filling the user’s answer with the associated data type. Re-
garding the complexity of events, STEIN is able to collect both
simple DOM events (e.g., mouse-click, mouse-move) and complex

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

87



M. Angelini et al. / STEIN: speeding up evaluation activities with a Seamless Testing Environment INtegrator

ones (e.g., zoom, brush). The first ones are captured by overriding,
in the target system, the addEventListener DOM method [Kac16]:
first sending the event to STEIN and then calling the already de-
fined listener function. Complex events, instead, are captured by
watching changes on status event variables of DOM manipulation
libraries (e.g., d3.event of the d3.js library [BOH11]). An API is
provided to developers in order to communicate with STEIN and
to better integrate the target system.

In the ColorBrewer use case, STEIN is able to capture 24 dif-
ferent events: 20 without an associated data type (e.g., change on
blind-check, click on downloads, etc.) and 4 with an associated data
type (e.g., click-on-ramp). Figure 4 shows the details of the col-
lection of the scale selection event (“click-on-ramp”), triggered by
clicking on one of the scales and linked to the ramp data type. At
the end of this phase, the designer has collected (a subset of) the
target system interactions and data types, having available the rele-
vant data on which building the questionnaire.

Figure 4: The image shows the collection of the “scale selection
event” linked to previously created “ramp” data type.

3.4. Questionnaire design & evaluation testing

The STEIN system allows to define a questionnaire organized into
three sections: initial questions, system questions, and final ques-
tions. Initial questions are proposed at the beginning of the eval-
uation to ask information not necessarily related to the target sys-
tem (e.g., gender, age, etc.). The target system is not visible while
showing these questions. System questions are strictly related to
the target system and they are shown on the working panel; as a
result, the user can interact with the system while answering the
questions. Final questions are proposed at the end of the evalua-
tion and they are, as the initial questions, not strictly related to the
target system. For each question it is possible to select the desired
response type (e.g., free text, multiple choices). System questions
allow additional response types based on the data types and events
collected in the previous phases: every time a collected event with
the same data type of the question is dispatched, STEIN extracts
the linked data type (e.g., a scale instance) and automatically adds
it to the answer.

STEIN allows interactively testing each question at design time,
in order to verify its efficacy, and if the response type is appropriate.
At any time the designer can switch between the testing questions
environment and the questionnaire design environment. Eventually,
it is possible to test the whole questionnaire.

3.5. Evaluation running & tracing

At the end of the Evaluation design, the system generates a con-
figuration file, in json format, used for deploying the evaluation.
This file can be edited with STEIN at any time (e.g., to add ques-
tions, trace new events, define new data types). STEIN manages the
persistence of the evaluation process, allowing the user to stop and
resume the questionnaire at any time. At the end of an evaluation
run, the system generates an output file (that can be exported to be
processed for analysis in a different environment) containing the
given answers and the traced events for each question. In addition
to the collected events, STEIN traces a) the mouse movements and
the list of all the elements that are hovered by the mouse during
its movement and b) the response times, distinguishing between
reading question time, and answering question time. The former is
modeled as the time elapsed from the moment in which the question
is shown until the generation of the first user’s event on the target
system. The latter is the remaining time until the user confirms the
answer and moves on to the next question.

4. Discussion & Future Directions

During the development of an evaluation questionnaire we coped
with the problem of creating an environment to design and run the
process, generating the main requirements of the STEIN system.
We highlight as main advantage of this approach the possibility to
speed up the evaluation process design by not asking the designer
to re-implement each time the technical infrastructure from scratch,
allowing more time on the questionnaire design and improving the
reuse of best practices from past evaluation activities. This is rein-
forced by the capability of concentrating all the evaluation activi-
ties in a single environment. STEIN targets different kinds of users,
such as domain experts that do not have particular programming
skills by providing an environment that captures the default behav-
ior of a target system, not asking to cope with its code; nonetheless
STEIN helps also the skilled programmers who may want to in-
ject very specific behaviors to the target system (e.g., for defining
additional events) by allowing their definition inside STEIN. We
have used STEIN for our internal evaluation activities, i.e., eval-
uating a complex visual analytics system and comparing different
implementations of a basic interaction activity, confirming that the
seamless way of selecting the answers within the target system fa-
cilitates the user in answering the questionnaire and allows for ob-
taining more precise time tracking (in some cases the answer was
compound by a list of items). Regarding possible use scenarios,
in addition to the evaluation of proprietary systems, STEIN allows
to conduct comparative analysis among several systems by embed-
ding them in the same common evaluation environment, without
inspecting their source code, like image visual encodings recovery
in [PH17] [PMH18] [BDM∗17]. About limitations, STEIN works
only with Web based systems and pure desktop programs cannot
be evaluated using it. We plan to further improve STEIN by imple-
menting automatic events and data types extraction functionality
that can assist the designer in the data types and events collection
phases. We further plan to add a specific environment for trace anal-
ysis, allowing to use its results as a feedback during the evaluation
design phase.

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

88



M. Angelini et al. / STEIN: speeding up evaluation activities with a Seamless Testing Environment INtegrator

References
[BDM∗17] BATTLE L., DUAN P., MIRANDA Z., MUKUSHEVA D.,

CHANG R., STONEBRAKER M.: Beagle: Automated extraction
and interpretation of visualizations from the web. arXiv preprint
arXiv:1711.05962 (2017). 4

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-driven
documents. IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis)
(2011). URL: http://vis.stanford.edu/papers/d3. 4

[Car08] CARPENDALE S.: Evaluating Information Visualizations. Lec-
ture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics) 4950 LNCS
(2008), 19–45. doi:10.1007/978-3-540-70956-5_2. 2

[FB15] FEKETE J.-D., BOY J.: Interaction trace manager, Apr 2015.
URL: https://github.com/INRIA/intertrace. 2

[HB03] HARROWER M., BREWER C. A.: Colorbrewer. org: an online
tool for selecting colour schemes for maps. The Cartographic Journal
40, 1 (2003), 27–37. 3

[HR00] HILBERT D. M., REDMILES D. F.: Extracting Usability In-
formation from User Interface Events. ACM Computing Surveys 32, 4
(2000), 384–421. doi:10.1145/371578.371593. 1, 2

[HS88] HART S. G., STAVELAND L. E.: Development of nasa-tlx (task
load index): Results of empirical and theoretical research. In Advances
in psychology, vol. 52. Elsevier, 1988, pp. 139–183. 1

[IH01] IVORY M. Y., HEARST M. A.: The state of the art in automat-
ing usability evaluation of user interfaces. ACM Comput. Surv. 33, 4
(Dec. 2001), 470–516. URL: http://doi.acm.org/10.1145/
503112.503114, doi:10.1145/503112.503114. 1

[JR17] JACKSON J., ROBERTS J.: Vissurvey.js - a web based javascript
application for visualisation evaluation user studies. In Poster presented
in 2017 VIS IEEE Conference (2017). URL: https://github.
com/jamesjacko/visSurvey. 2

[Kac16] Ui events, w3c working draft, Aug 2016. URL: https://
www.w3.org/TR/DOM-Level-3-Events/. 4

[LBI∗12] LAM H., BERTINI E., ISENBERG P., PLAISANT C., CARPEN-
DALE S.: Empirical Studies in Information Visualization: Seven Scenar-
ios. IEEE Transactions on Visualization and Computer Graphics 18, 9
(2012), 1520–1536. doi:10.1109/TVCG.2011.279. 1, 2

[PH17] POCO J., HEER J.: Reverse-engineering visualizations: Recov-
ering visual encodings from chart images. In Computer Graphics Forum
(2017), vol. 36, Wiley Online Library, pp. 353–363. 4

[Pla04] PLAISANT C.: The Challenge of Information Visualization Eval-
uation. Proceedings of the working conference on Advanced visual
interfaces - AVI ’04 (2004), 109. URL: http://portal.acm.
org/citation.cfm?doid=989863.989880, doi:10.1145/
989863.989880. 2

[PMH18] POCO J., MAYHUA A., HEER J.: Extracting and retargeting
color mappings from bitmap images of visualizations. IEEE transactions
on visualization and computer graphics 24, 1 (2018), 637–646. 4

[PP02] PAGANELLI L., PATERNÒ F.: Intelligent Analysis of User
Interactions with Web Applications. Proceedings of the 7th inter-
national conference on Intelligent user interfaces - IUI ’02 (2002),
111–118. URL: http://dl.acm.org/citation.cfm?id=
502735{%}5Cnhttp://dl.acm.org/citation.cfm?id=
502716.502735, doi:10.1145/502716.502735. 2

[SP06] SHNEIDERMAN B., PLAISANT C.: Strategies for Evaluat-
ing Information Visualization Tools: Multi-dimensional In-depth Long-
term Case Studies. Proceedings of the 2006 AVI workshop on BE-
yond time and errors: novel evaluation methods for information visu-
alization - BELIV ’06 (2006), 1–7. URL: http://portal.acm.
org/citation.cfm?id=1168149.1168158, doi:10.1145/
1168149.1168158. 2

[VBT∗16] VUILLEMOT R., BOY J., TABARD A., PERIN C., FEKETE
J.-D.: Challenges in Logging Interactive Visualizations and Visualizing

Interaction Logs. In Workshop on Logging Interactive Visualizations
and Visualizing Interaction Logs (LIVVIL ’16) (Baltimore, United States,
2016). 2

c© 2018 The Author(s)
Eurographics Proceedings c© 2018 The Eurographics Association.

89

http://vis.stanford.edu/papers/d3
http://dx.doi.org/10.1007/978-3-540-70956-5_2
https://github.com/INRIA/intertrace
http://dx.doi.org/10.1145/371578.371593
http://doi.acm.org/10.1145/503112.503114
http://doi.acm.org/10.1145/503112.503114
http://dx.doi.org/10.1145/503112.503114
https://github.com/jamesjacko/visSurvey
https://github.com/jamesjacko/visSurvey
https://www.w3.org/TR/DOM-Level-3-Events/
https://www.w3.org/TR/DOM-Level-3-Events/
http://dx.doi.org/10.1109/TVCG.2011.279
http://portal.acm.org/citation.cfm?doid=989863.989880
http://portal.acm.org/citation.cfm?doid=989863.989880
http://dx.doi.org/10.1145/989863.989880
http://dx.doi.org/10.1145/989863.989880
http://dl.acm.org/citation.cfm?id=502735{%}5Cnhttp://dl.acm.org/citation.cfm?id=502716.502735
http://dl.acm.org/citation.cfm?id=502735{%}5Cnhttp://dl.acm.org/citation.cfm?id=502716.502735
http://dl.acm.org/citation.cfm?id=502735{%}5Cnhttp://dl.acm.org/citation.cfm?id=502716.502735
http://dx.doi.org/10.1145/502716.502735
http://portal.acm.org/citation.cfm?id=1168149.1168158
http://portal.acm.org/citation.cfm?id=1168149.1168158
http://dx.doi.org/10.1145/1168149.1168158
http://dx.doi.org/10.1145/1168149.1168158

