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Abstract
The efficient extraction and communication of information in heterogeneous data domains is a major challenge in the context
of the ongoing digitalization efforts in industry and in the public sector. The heterogeneity of the data itself and the diverse
interests of the users addressing it demand the integration of structural and semantic information about data aggregated from
multiple sources into a single model and unified visualization. In this paper, we present an approach to visualize the possible
interpretations of data integrated from heterogeneous environments, including the sequences of operations applied to filter,
transform, and reinterpret the data, such that the result supports these interpretations. Users can thereby access and explore
integrated data from the perspective specific to their respective fields of experience.

Categories and Subject Descriptors (according to ACM CCS): I.2.4 [Artificial Intelligence]: Knowledge Representation For-
malisms and Methods—Semantic Networks; I.3.m [Computer Graphics]: Miscellaneous—

1. Introduction

Recent developments in the field of the Internet of Things and
the ongoing digitalization efforts in industry nourish a strong and
still increasing interest in data analytics. Decision support for
strategic planning and process optimization are major drivers for
data analytics in industry as well as in the public sector. Complex
applications require the aggregation and integration of data from
heterogeneous environments, where context- or vendor-specific
naming conventions limit the compatibility of data from different
sources or domains. For data bases, this problem is solved by
semantic integration, matching data items by their meaning rather
than their labels. However, data integration alone is insufficient
for proper analytics, since domain-specific interpretations cannot
simply be overridden by a superordinate naming convention.
Different users will still interpret the same data differently. As
an example, consider an industry where a sales manager and a
production manager monitor the percentage of defective parts
being produced by a milling machine. The sales manager applies
it as a correction factor for the time to produce a given number of
parts, whereas the production manager uses the exact same fraction
as a performance indicator for the scheduling of maintenance
intervals. While, formally, the percentage of defective parts is an
error rate and therefore likely to be labeled as such after (seman-
tic) integration, the managers’ different points of view require
different interpretations of this data to infer the desired information.

Current models for data analytics commonly focus on either the
structural composition or the semantics of data. Consequently, vi-

sualization techniques also focus on either the structure or the se-
mantics. However, the demand for context-specific data representa-
tions in integrated environments motivates an integral visualization
of the data’s structure and the different applicable interpretations.

For the visualization of the semantics of integrated data struc-
tures, we identify the following requirements:

[R1] Explicit encoding of the domain-specific semantics.
[R2] Support for context-sensitive data interpretation and dynamic

binding of actual data sources.
[R3] Concise and clear presentation of structure and semantics.
[R4] Concise depiction of data provenance revealing the transfor-

mation paths from raw data to interpreted information.

Towards satisfying these requirements we propose to combine
context-sensitive semantics with a concise yet expressive graph-
based visualization. Our contribution is twofold:

1. We introduce situation semantics and situation theory to the field
of visualization as a model to define semantics and context.

2. We propose a visualization for integrated data in heterogeneous
environments that – enriched with elements for operations per-
formed on the data – concisely conveys the applicable semantics.

The remainder of this paper is structured as follows: In the next
section, we introduce relevant aspects of situation theory and ex-
plain how we model possible interpretations that may apply after
binding the abstract structure to actual data. We then turn to the
description of our visualization technique and demonstrate its ap-
plication in an example. From the discussion of our method’s per-
formance in satisfying the above requirements, we derive directions
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for the next steps we are planning to take in the course of this re-
search. We conclude the paper with a summary of the key features
of the proposed visualization approach.

2. Model

2.1. Context-Sensitive Semantics

Semantic data models often organize data in a labeled graph which
can be interpreted in a way that allows the inference of certain
information about the data. A popular example for such a model
is the semantic web [BLHL01]. Yet, the inference rules are usu-
ally not explicitly encoded in the network. The inherent ambigu-
ity resulting from this fact can be alleviated by applying an on-
tology providing the correct interpretation of data items based on
syntactic rules. This property enables the integration of data from
heterogeneous sources with potentially differing naming conven-
tions [Gar05]. However, such a procedure requires interpretation
and transformation to map the data to a common ontology. In se-
tups where data instances and semantics can change independently,
this introduces synchronization problems. For example, it requires
an updated ontology to contain legacy elements to remain consis-
tent with the data. It would thus be more convenient if the data
itself could directly provide the correct interpretation. We model
these interpretation rules explicitly, using situation semantics as in-
troduced by Barwise and Perry in 1983 [BP83]. In particular, our
technique employs the following features of this theory:

1. inherent context-sensitivity: the situation is a collection of facts,
the infons, explicitly stating that within the situation an expres-
sion does or does not hold. The notion of holding with respect to
a situation is called the polarity. If an expression e has polarity
1 with respect to situation s, we say s supports e.

2. partiality: the situation is never completely known. Therefore,
its description is always considered incomplete but extendable.

3. dynamic interpretation: so-called types model objects and situa-
tions by describing their properties. We identify types describing
objects directly with data entities. Since this renders objects into
collections of properties, in our work, every type is also a situ-
ation. Types are linked by constraints that model general rela-
tions between them. Constraints are satisfied if the situation sup-
ports the incident type. Intuitively, if the situation is the same on
both sides of a constraint, it is an inference of polarities. In our
application, this is generally the case. Conditional constraints
may only take effect if the situation supports the additional in-
formation defined in the condition.

4. Additional information introduced into the situation may change
the set of applicable constraints and therefore change the possi-
ble semantics. The same holds for the introduction or removal of
new data instances determining infon polarities.

For a more detailed discussion on situation semantics, the reader
is kindly referred to Keith Devlin’s review [Dev06] and for a more
elaborated discussion on situation theory, the reader may be inter-
ested in John Barwise’s original introduction of the idea [Bar86].
Rather than modeling the situation directly, we consider the types
as free variables and only model the constraints between them. The
resulting network of constraints is applicable to arbitrary situations
by binding (subsets of) the available free variables allocating the in-
fon polarities. By the conditions, the infon polarities determine the

applicability of interpretations. To also consider derived data that is
not directly available but has to be computed from other data, we
extend the graph by the syntax of the data’s structural composition
and the operations that can be performed on it. Like the applicabil-
ity of constraints, the results of operations performed on data also
depend on individual data instances. Thereby, we model a universe
of possible situations according to the data’s structural composi-
tion and the known semantics. The actual situation is then captured
by evaluating the network of transitions (syntax) and constraints
(semantics) based on the actual data instances. It is determined by
exactly the subset of semantic concepts that is reachable from the
data concepts for which at least a single data item exists or can be
computed and the constraint and interpretation paths leading there.

2.2. Information Provenance

To allow a user to make informed decisions based on interpreted
and transformed information rather than raw data, it is important
to convey the history of operations performed on the data. Incor-
porating information provenance into the model and visualization
reveals the data sources involved in the process of deriving new
information. After all, the derived information can only be as trust-
worthy as the data it is obtained from. One approach of providing
this information provenance is to specify proof traces in a formal
proof modeling language [dSDMM03], [dSMF06]. While this al-
lows the computer to estimate the trustworthiness of derived infor-
mation based on a set of inference rules, it is comparably hard to
read for a human user. Visual representations of data transforma-
tion paths, on the other hand, typically focus on certain aspects of
the transformation pipeline rather than on the change of the data
or its meaning. This different focus often necessitates the inclusion
of additional detail information. While such decisions are perfectly
sound for their respective applications, our focus on the possible
changes of data syntax and semantics usually does not require this
level of detail which is why we favor a more simple representation.
We abstract all possible operations into three types:

1. Filters are set operations that neither change the data nor the
interpretation.

2. Transformations directly change the data. The output data might
have different semantics than the input.

3. Interpretations assign new semantics to the data. These new se-
mantics can be associated with a different concept not reachable
under the prior interpretation. An interpretation’s applicability
can depend on additional conditions.

This high level abstraction provides an overview over the sequences
of operations applied to data until it supports certain information.
Information provenance can therefore be assessed by following
these paths backwards until raw data is reached.

3. Visualization

To visualize the possible interpretations of integrated data, we pro-
pose a graphical annotation for the graph structure we developed in
Section 2.1. Note that without the operations, the graph reduces to
an interlinked web of data, similar to the internet. This resemblance
renders semantic web technologies natural candidates for our visu-
alization. Recent studies have shown that VOWL, a graphical anno-
tation for the Web Ontology Language [NL13, NHL13, LNHE16],
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can considerably improve the communication between domain and
ontology experts if it is integrated into an interactive framework
[NHL13, LNHE14]. To benefit from these findings, we visualize
the graph as a node-link diagram based on VOWL2 [NLH14] and
the WebVOWL platform [LLMN15].

Although this notation is directly applicable to the interlinked
concepts, we need to extend it to include the operations and the
distinction between data transformation syntax and the applicable
semantics. Extensions of VOWL notation have been proposed to
cover dynamics or to be applied to text visualization [DLCW15,
BL15]. In contrast to these extensions, our focus is the integration
of different semantics from multiple domains and their applicability
with respect to the context defined by the data.

We adopt the basic graphical representation of data attributes
and relations from VOWL2. The nodes symbolizing the classes in
VOWL2 denote the concepts in our model. To encode the opera-
tions, we introduce special nodes symbolizing filters, transforma-
tions, and interpretations. We apply colors to clearly distinguish
between the nodes and edges that are associated with semantic in-
formation and those that represent or act on data. The annotation is
explained in Figures 1 and 2. In the resulting graph of concepts and
operations, the subgraph induced by the blue nodes and edges de-
notes the syntax of possible data transformations, its orange coun-
terpart defines a conceptual model on the semantic level. Wherever
the same concept is connected to multiple interpretation nodes, dif-
ferent domains assign different semantics to the same data. The
user decides which of the possible interpretations is to be applied.

- syntactic -

Concept Label
- semantic -

 

Concept Label
- semantic -

syntactic 
relation

semantic
constraint

Syntax

Semantics

Basic Color Scheme

Figure 1: Visual representation of concepts and relations. A basic
color scheme distinguishes syntax and semantics. Circles with an
orange border indicate concepts that only contain semantic infor-
mation and are not directly identified with data. Circles with half-
blue and half-orange border indicate concepts that directly relate
data to semantics. The same color scheme applies to edges.

3.1. Application Example

We demonstrate the usage of our model and graphical annotation by
the example introduced in Section 1. The resulting graph is shown
in Figure 3. A milling machine processes raw material (e.g. stain-
less steel) to produce metal parts. We consider the scenario of a
sales manager and a production manager, two experts from differ-
ent domains, both of which are interested in the amount of defective
parts being produced.

The sales manager needs to determine how many parts can be of-
fered to customers based on the actual production rate. Relying on
the syntactic information this expert can only learn that a produc-
tion rate can be computed by using data associated to the milling

operation label

outputinput

Filter
Label

Trans.
Label

Syntactic Operations

Semantic Operations

Figure 2: Visual representation of operations. A shaded circle seg-
ment indicates the direction of the data flow from input to output.
Since they operate on the syntax, filters (top-left) and transforma-
tions (top-right) are depicted with a blue border. The orange border
of conditional and unconditional interpretations (bottom-left and
bottom right) indicates their influence on the semantics.

machine. In the sales management domain, the relevant factor is
named the "reject rate". Even though what is called the "error rate"
in the integrated data is directly linked to the milling machine, as-
sociating it with the reject rate requires extensive detail knowledge
of the data structure. In the graph obtained using our model, this in-
formation is carried by the interpretation operation linking the error
rate to the reject rate. Following the constraints, a less experienced
user will be able to infer that the production rate of a milling ma-
chine is determined by the reject rate, which in the data structure is
referred to as the error rate, the percentage of defective parts.

Similarly, the production manager is interested in scheduling
maintenance intervals to prevent the risk of critical failures of the
milling machine. From the semantic information, the expert learns
that the input for this estimation is the same error rate that the sales
manager applies to compute the production rate.

4. Discussion and Future Work

The proposed extension of VOWL2 and its integration with situa-
tion theory satisfies the requirements defined in Section 1 well:

[R1] Domain-specific semantics are encoded by explicitly associ-
ating data with its several possible interpretations (visualized
as orange concepts and relations).

[R2] With situation semantics and situation theory, we apply an
inherently context-sensitive model for data semantics. Dy-
namic binding of data sources is possible, but requires a
reevaluation of the applicable semantics.

[R3] Structural and semantic information are clearly distinguish-
able by applying the proposed color scheme.

[R4] Information provenance is easily traceable following the
paths marked as syntactic transitions, i.e. the sequences of
applied data transformations and relations between data ele-
ments. Detail information about operations can be accessed
and edited on demand (see Figure 3).

The ongoing integration of our approach into an interactive visu-
alization system based on WebVOWL will further enhance compli-
ance with the requirements. For example, automatic extraction and
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Figure 3: Graph of the milling machine example. Transformation operations are applied to infer the production rate and maintenance rate
of the milling machine. A filter identifies the produced parts that do not comply to an error tolerance. A conditional interpretation encodes
the recognition of these parts as defective. Two unconditional interpretations link the error rate to the domain-specific semantics. Following
the graph’s edges, the user can infer how the concepts are related on the semantic level and how operations translate between data with
different associated semantics.

highlighting of applicable interpretations can reduce the graph’s
complexity. This could be combined with user and task profiles
to highlight concepts and interpretations by domain-specific rel-
evance. Likewise, the interactive extension and modification of
structure, semantics, and operations can enrich the analysis experi-
ence by enabling the direct incorporation of newly obtained insight.
Studies with experts from different application domains will eval-
uate the usefulness and applicability of our approach and identify
directions for further improvement.

5. Conclusions

In this paper, we propose an approach to the visualization of the
semantics of integrated data structures. We apply situation seman-
tics to model all possible interpretations of the data as a universe of
situations. The actual data instances determine the subset of appli-
cable interpretations and thereby the concrete situation observed.
Being inherently context-sensitive, the semantics and therefore the
visualization can be applied to dynamically changing data by re-
binding the abstract model to different data sources. A graph-based
visualization captures the applicable semantics and reveals the se-
quences of operations applied to filter, transform, and interpret the
available raw data into a form supporting these semantics. Encod-

ing data semantics explicitly rather than deriving it from external
knowledge, our model is essentially domain independent. Conse-
quently, the proposed model and visualization have a diverse range
of applications, including highly complex fields such as business
analytics, factory planning, predictive maintenance, and generally
every domain where an integrated view on a heterogeneous data en-
vironment meets diverse interests of users addressing the data. All
these areas benefit significantly from the integrated visualizations
of semantic and structural information. Therefore, we consider this
work as a first step towards a visualization of context-dependent
meaning in heterogeneous data environments.
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