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Abstract

Animations which show three dimensional volumes continuously changing over time facilitate the exploration and analysis
of complex data sets such as calcium image data of neural activity and phase contrast magnetic resonance imaging of blood
flows. This paper explains the marching pentatopes method for representing the iso-surfaces of a four dimensional data set as a
triangulated surface smoothly deforming as time progresses. The morphing triangulations generated by the this method may be
rendered using the morph geometry capabilities provided by the three.js javascript library for cross platform HTML5/WebGL

presentation in standard web browsers [Cabl7].

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image Generation—Display

algorithms

1. Introduction

Biological data is often four dimensional in raw form. For exam-
ple phase-contrast magnetic resonance imaging [DBB*15] detects
blood flow velocity in three spatial dimensions varying over a se-
quence of time samples and calcium imaging detects neuron ac-
tivity in three dimensions varying over time [GKHO7]. It is useful
to be able to visualize the data directly using morphing 3 dimen-
sional isosurfaces in order to identify characteristics, features, or
measurement problems.

This paper presents the marching pentatopes method for deriv-
ing smoothly morphing triangularized geometries approximating
iso-contours of scalar data f(x,y,z,¢) within a grid in a four dimen-
sional volume as implemented in the contourist library [Watl7]
for numeric Python [JOP* ]. We present the marching pentatopes
method as a generalization of the lower dimensional marching tri-
angles method for deriving contour lines and the marching tetra-
hedra method for deriving iso-surfaces. The contourist package
implements all of these methods using a common object oriented
architecture designed to be used in conjunction with the three.js
javascript library for WebGL [Cab17] which allows the geometric
structures generated by contourist to be rendered in web browsers
in combination with the features provided by three.js — such as
lighting, shadowing, text rendering, various material implementa-
tions and interactive controls [Dirl3].

2. Preliminaries

The contourist software computes implicit figures for any target
value and any grid geometry. This presentation uses a simplified
framework without loss of generality for notational convenience.
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Below we present some terminology and definitions useful in the
explanation to follow.

We consider the problem of approximating zero valued iso-
contours interpolated within grids limited to coordinates values
N ={0,1,...n— 1} for some fixed positive integer n where the grid
N? has dimension d € {2,3,4}. The contour computation seeks to
interpolate a fixed function f : N = R approximating a hypothet-
ical point set {p € R| f(p) = 0} of the zeros of f within the limits
of the grid NY,

We say a point p € N is a positive if f(p) >0 or we say p is a
negative if f(p) < 0. A set of grid points S C N¢ crosses zero if S
contains at least one negative point and at least one positive point.
If {p,p’} C N cross zero the interpolated zero pop’ is defined as

r_ f(p)p’ —f(p")p d
POP = “fp—fp) €7

Two grid points p,p’ € N’ are adjacent if max(|p; — p'|) = 1.
A sequence of grid points pg,Ppy,..,Pm € N where each p; is ad-
jacent to pj1 define a grid path as the union of the line segments
connecting each p; to pjy1.-

For any finite set of points S = {py, ...,pm} C N¢ we define the
convex closure of S, C(S), to be the set of points generated by Y a; p;
for any set o; € [0,1] where Y o; = 1. If the points S = {py,...,Pm}
are linearly independent we say that the convex closure C(S) de-
fines a simplex of dimension m — 1.

The voxel vertices P(p) for a grid point p € N¢ are the set of
grid points including p and also including all p’ € N4 adjacent to p
where all pj > p;. The voxel V(p) = C(P(p)) is the convex closure
of the voxel vertices P(p) —a square if d =2, acube if d =3, or a
tesseract if d = 4.

A contour separating a positive seed point p € N and a nega-
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Figure 1: Smoothly interpolated CT-Scan data from the Stanford volume data archive [Lev00] sampled using local variance at different level

sets..

tive seed point p’ € N is a set of linearly independent point sets
C = {cp,..,cm} where each ¢; C R of size d represents a sim-
plex of dimension d — 1 such that every grid path connecting p and
p’ intersects the simplex C(c;) for some c¢;. Additionally for each
¢; there must be a grid point p € N where each point in q € ¢;
is an interpolation of a pair of points from P(p) that cross zero.
More precisely for each q € c; there are voxel vertices v,v' € P(p)
crossing zero where q = vov’. Note that this definition of the con-
tour concept does not define a unique contour for each pair of seed
points — it is possible for seed point pairs p and p’ to have several
contours that separate them.

The main contribution of this paper is to introduce marching pen-
tatopes, a method for finding four dimensional morphing contours.
In the process we describe a unified algorithm structure for finding
contours ford =2,d =3, and d = 4:

In the 2 dimensional case the algorithm is a variant of the march-
ing triangles contour algorithm which is a simplification of the
marching squares contour algorithm [HSIW96, MapO03]. In the 3
dimensional case the algorithm is a variant of the marching tetra-
hedra contour algorithm which is a simplification of the marching
cubes contour method [WM97, LC87]. In the 4 dimensional case
the algorithm, marching pentatopes, could be viewed as a simpli-
fication of marching hypercubes [RH99, BWC04]. The marching
pentatopes algorithm has two special cases for dividing the four
dimensional pentatope into tetrahedra where the marching hyper-
cubes algorithm provides 74 special cases for dividing the tesseract
(hypercube) into tetrahedra.

All method variants presented here only examine voxels adja-
cent to the contour and voxels lying on a line segment between
"seed points”. For this reason the algorithm need not examine the
vast majority of the grid points in many cases where the grid may
be large or the calculation or retrieval of the f(p) values may be
expensive.

2.1. Other related work

Weigle and Banks [WB96] present a mesh generation approach that
can be used for any number of dimensions which is similar to the
approach presented here. Their method introduces midpoints in the
interpolation step (step 4 below). The use of midpoints results in
as many as 4 triangles dividing each crossing tetrahedron in three
dimensions and as many as 5 tetrahedra dividing each pentatope in
four dimensions. By contrast the methods described below are more
parsimonious — producing at most 2 triangles for each crossing
tetrahedron in three dimensions and at most 3 tetrahedra for each
crossing pentatope in four dimensions. Other methods for interpo-
lating four dimensional fields require special purpose GPU shader
programs and are not easily converted into morphing triangularized
geometries as implemented by libraries such as three.js [BSL*13].
Itis not straightforward to add additional functionality to the tightly
coupled internal shader logic implemented in three.js.

3. Marching methods for approximating implicit figures

All of the marching methods described here have a similar outline.
All basic features of the method are illustrated for the simplist case
of Marching Triangles in Figure 2.

3.1. Inputs and Outputs

Inputs: A grid N?, afunction £ and a pair of seed points p,p’ € N¢
where p is negative and p’ is positive.

Outputs: A contour C separating p from p’ in N and a post-
processed structure derived from C suitable for rendering.

3.2. Method outline

1: Locate initial crossing voxels. Use binary search between p
and p’ to find a grid point py where V(po) crosses zero.

2: Find all adjacent crossing voxels. Find the smallest set of
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grid points G = {p;} such that py € G and for any p,q € N¢ if
p € G and q is adjacent to p and V(q) crosses 0, then q € G.

3: Tile the crossing voxels into crossing simplices of dimen-
sion d. For example for d = 3 each crossing cube is tiled into six
tetrahedra. Collect the generated simplices that cross zero into the
set T

4: Separate positive from negative vertices of simplices in
T. For each simplex s € T find simplices of dimension d — 1 with
vertices that interpolate the vertices if s separating the positive from
the negative vertices in s. The generated collection C of simplices
of dimension d — 1 is the desired contour.

5: Post processing. Translate the contour C into a structure suit-
able for rendering.

Steps 1 and 2 are applications of the well known binary search
[Ben75] and transitive closure [War75] techniques. Please see the
contourist source code for additional details of the implementation.
The steps 3, 4, and 5 vary between the casesd =2,d =3,and d =4,
with each case discussed in its own subsection below.
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Figure 2: Summary diagram for the marching triangles method
with dimension d =2 and grid size n = 4. Here the contour approx-
imates f(x,y) =y —0.4x> —0.2 = 0 in the grid {0,1,2,3}*> = N%.
The seed line segment between the seed points (1,0) and (2,3) is in
dark gray (Step 1). Crossing squares are in pink (Step 2). Crossing
triangles tiling the squares are in light gray (Step 3). Positive ver-
tices are in blue. Negative vertices are in red. Line segment inter-
polation points are in black. Green line segments joining interpola-
tion points separate positive from negative vertices in the crossing
triangles (Step 4). Contour approximation line segments assemble
into a path starting at the large yellow point and ending at the large
green point (Step 5).

3.3. Marching triangles specialized steps

This section sketches the specialized steps 3, 4, and 5 for the march-
ing triangles method where dimension d = 2.

Marching triangles step 3: tile crossing squares as 2 triangles.
We divide each crossing square V (p) into two triangles (simplices
of dimension 2). Of the generated triangles we select those that
cross zero as the set 7.

Marching triangles step 4: Separate positive and negative
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vertices in crossing triangles with interpolated line segments.
For each crossing triangle of the tile set 7' we find one line segment
between interpolated points lying on crossing edges. We collect the
interpolated line segments generated as the contour C.

Marching triangles step 5: Assembling contour paths from
line segments. Finally in order to render the contour curve in an
efficient and appropriate manner using graphics libraries we must
join connecting line segments into continuous paths.

Figure 3: Crossing cubes are tiled into six tetrahedra in marching
tetrahedra method step 3. Each of the tetrahedra is associated with
one of the permutations of "xyz".

a-ae

d

Figure 4: For a tetrahedron with two positive vertices {a,b} and
two negative vertices {c,d} separate positive and negative ver-
tices using two triangles with vertices at {aod,boc,aoc} and
{aod,boc,bod} in marching tetrahedra step 4.

3.4. Marching tetrahedra specialized steps

This section explains the specialized steps 3, 4, and 5 for the march-
ing tetrahedra method where dimension d = 3.

Marching tetrahedra step 3: tile crossing cubes using 6 tetra-
hedra. We divide each crossing cube V(p) into six tetrahedra by
assigning to each of the six permutations of "xyz" a tetrahedron
where the dimension quantity order is defined by the permutation.
For example for the permutation "zyx" we associate the tetrahedron

{(PO +X7P1 +y7p2+z) |X,y,Z € [0‘ l} and z Sy S)C}

The cube tiling is illustrated in Figure 3. The tetrahedral tiles that
cross zero are collected as the tile set 7'.
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Marching tetrahedra step 4: Separate positive and negative
vertices in each crossing tetrahedron using one or two trian-
gles. For each crossing tetrahedron of the tile set 7 we determine
the positive vertices and the negative vertices of the tetrahedron.
For a tetrahedron with one positive vertex (or symmetrically one
negative vertex) a and negative vertices b, ¢, d, separate a from the
negative points using a triangle with vertices at {aob,aoc,aod}.
Otherwise there are two positive and two negative vertices in the
crossing tetrahedron: separate the positive and negative vertices us-
ing two triangles as shown in Figure 4. The set of triangles gener-
ated define the contour triangulation C.

Marching tetrahedra step 5: Orient the triangles of the con-
tour to be counterclockwise when viewed from the "outside"'.
In order to make sure that the surface normals are computed con-
sistently for proper lighting interactions in three.js the triangle ver-
tices must be provided in anti-clockwise order when viewed from
the "outside" of the volume [Muk12]. Please consult the contourist
source code for the implementation details of this operation.

Figure 5: The 24 pentatopes tiling a tesseract intersected with the
hyperplane t = 0.4 from marching pentatopes step 3.

Figure 6: For a pentatope with two positive vertices
{a,b}, here projected into 3 dimensions, separate the posi-
tive vertices from the negative vertices using three tetrahe-
dra with vertices {ace,aoc,aod,boe}, {bod,aoc,aod,boe},
{boc,aoc,bod,boe}. in marching pentatopes step 4.

3.5. Marching pentatopes specialized steps

This section explains the specialized steps 3, 4, and 5 for the march-
ing pentatopes method where dimension d = 4.

Marching pentatopes step 3: tile crossing tesseracts using 24
pentatopes. We divide a crossing tesseract V (p) into 24 pentatopes
by assigning to each of the 24 permutations of "xyzt" a pentatope
where the dimension quantity order is defined by the permutation,
illustrated in Figure 5. For example for the permutation "zytx" we
associate the pentatope

{(po+x,p1+y,p2+z.p3+1) | x,y,z,t€[0,1]and z <y <t <x}

The tiling pentatopes which cross zero define the tile set 7.

Marching pentatopes step 4: Separate positive and negative
vertices in each crossing pentatope using one or three tetra-
hedra. For each crossing pentatope of the tile set 7 we separate
the positive vertices and the negative vertices of the pentatope us-
ing interpolated tetrahedra. For a pentatope with one positive ver-
tex (or symmetrically one negative vertex) a and negative vertices
b, c,d, e separate a from the negative vertices using one tetrahedron
with vertices {aob,aoc,aod,ace}. Otherwise there are two pos-
itive and three negative vertices (or symmetrically two negative and
three positive vertices) in the crossing pentatope. In that case sep-
arate the positive and negative vertices using three tetrahedra as
shown in Figure 6. The tetrahedra generated define the contour C.

Marching pentatopes step 5: Convert the contour tetrahedra
into morphing triangles. The three.js library implements morph-
ing using "morphing triangles" where each vertex of the triangular-
ization is associated with a three dimensional start position at a start
time and a three dimensional end position at an end time. Translate
C into morphing triangles using the following procedure for each
tetrahedronint € C

Sort the ¢ values of the vertices of T with up to 4 unique val-
ues fq,11,... For each ¢ interval between the vertex ¢ values #;,#; 1|
compute the intersection T; of T with the hyperplane at the mid-
point t = (t; +;11)/2. The intersection either forms a triangle or a
tetrahedron in three dimensions and each of the vertices of the inter-
section lies on a 4 dimensional line segment between two vertices
of 7. If the intersection forms a triangle then generate a single mor-
phing triangle using the vertices of 7T that correspond to the vertices
of T; as the start and end positions of the morph. If the intersection
7; forms a tetrahedron then generate two morphing triangles using
the vertices of T that correspond to the vertices of T; as the start and
end positions of the morph in a manner similar to Figure 4. The
resulting set of morphing triangles are suitable for rendering using
the three.js library, which uses WebGL and the GPU to render the
morphs when available.

Above the choice of slicing in the ¢ dimension is arbitrary and
may be replaced with x, y or z as desired.
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