
Note Taking Environment for Visual Analytics Systems

Technical Description

This document describes technical aspects of the Note Taking Environment (NTE) divided in
the following sections:

1. Introduction and Technical Background

2. NTE UI and Widget Description

3. API Description

1 Introduction and Technical Background

The foundation of our approach is a note-taking environment (NTE, java component) pluggable
to any VA system. The NTE interface allows the analyst to create a knowledge graph that is
composed of different widget types. The NTE is capable to run as stand alone tool but is more
effective when it is tightly integrated with a VA system. Therefore it provides an Application
Programming Interface (API), allowing developers to integrate their system and the NTE. The
API allows VA tools to send bookmarks (visualizations) and additional information to the NTE.
Additional information may be defined by the developer and depends on the analysis case
at hand. These could be textual annotations, or measures, such as uncertainty information,
data-, or visual measures that might be visualized in the NTEs knowledge graph. In addition
to the visualization and context information, the NTE API is capable to handle a function
implementation that will be called when a bookmark is clicked in the NTE (callback function).
This allows a developer to define and set the current state/configuration of the bookmarked
visualization (in order to “jump back” to this particular analysis state any times). In this way,
the NTE API is completely independent from any application specifics of the VA system. The
NoteTakingService also offers a logging interface (similar to common used logger systems in
JAVA, e.g., log4j-http://logging.apache.org/log4j/2.x/) and allows for logging on different levels
low/operational and high/task) and action types (according to the task typology described by
Brehmer and Munzner [BM13]). The integration architecture is shown in Figure 1 on the left.

1

Figure 1: Our capturing approach: A note taking environment is plugged to a VA system. This
integration enables us to capture analytical processes on different levels. Additionally,
the NTE enables analysts to build a knowledge graph and to take further human
inputs, such as trust ratings. Finally, measures are derived as a basis for analyzing
human factors in VA processes.

The knowledge graph elements and the interaction measures and further human inputs are
captured and stored in data files that can be analyzed further. For example, for each widget,
the annotation, interactions and trust rating is stored. Additionally, for the user study, a global
trust rating was captured and stored, after each task.

Figure 2: The NTE user interface composed of 3 main panels (workspace, interaction view, and
overview).

2

2 NTE UI and Widget Description

Figure 2 shows the NTE user interface. It contains three main windows: 1) The workspace
where analyst are building a knowledge graph, 2) The interaction visualizations in the bottom
panel and 3) an overview component.

2.1 Menu Items

The menu bar on top offers several options/operations:

New: This menu provides options to create different widget types (Hypothesis, Notes, Insights).

Import: 1-File) An image file can be imported to the workspace (as a Finding widget). 2-XML)
This allows to load previously stored knowledge graphs.

Save: Saves the current knowledge graph (the user has to enter a file name and choose a
location).

Clear Workspace: Removes all items from all panels.

Help: Here different descriptions of the UI can be shown.

User Study: This option prepared our user study by adding the different hypothesis for task
1-6.

Settings: Capturing interactions can be turned off/on. Furthermore, the ration between un-
certainty and trust can be changed (under development).

Evaluation: This option provides another pop up panel that shows the captured measures per
widget or hypothesis for post analysis evaluation (under development).

2.2 Widgets

Creating, connecting and removing widgets: Widgets can be created by using the menu bar.
Another possibility is to right click in the workspace. A context menu is shown providing the
ability to chose a widget type that will be created. Similarly, right click on widgets will bring
up another context menu for widget operations, such as deleting widgets. Furthermore, when a
widget is hovered, it can be resized and repositioned.

Figure 3: Widget operations.

Hypothesis: A hypothesis widget holds a text area where hypotheses, tasks or questions can
be described. In addition, a trust bar is shown. It is composed of green and red bars, depending
on the amount of positive/negative findings and their trust ratings.

3

Finding: Each finding widget is composed of an image (that has to be imported from hard disc
or external VA system by using the API). In addition, a user can declare a widget as verifying,
falsifying or neutral. Furthermore, a trust slider is present (in all widgets except hypothesis).

Note/Insight: These widgets are simple text widgtes for externalizing thoughts/comments
(notes) or interpretations (insights).

Figure 4: Different widget types (Hypothesis, Finding, Note, Insight)

Trust Slider : Each widget (except the hypothesis widget) contains a trust slider that allows
the analyst to express their trust in it. The trust value is in range 1 to 7.

Pro/Contra/Neutral : Additionally, the user declares a widget as verifying, falsifying or neu-
tral using the face icon-buttons. These information will be propagated to the hypothesis widget
and visualized (bar).

Figure 5: Trust ratings for pro and contra evidences will be aggregated for each hypothesis.

2.3 Interaction Views

The captured interaction data can be shown in different ways. Therefore, the interaction view
offers different tabs:

Main Action Overview: The main action overview shows all the captured interactions. Grouped/sim-
ilar actions are shown among each other. Further, the rectangle border encodes the action

4

context (data, visualization, model) and the interaction level/phase is encoded as the rectangle
background color (exploration-dark gray, verification-light gray).

Figure 6: Main action overview

Widget Action Overview: The widget action overview shows the same information as the main
action overview for a single selected widget. E.g., when finding is clicked, all exploration and
verification interactions related to it are shown.

Level Action Overview: To create an overview of all the interactions (the main widget view
only shows the details of current interactions) the level action overview provides a simplified
and aggregated visualization. First, the interaction phases are visualized as bars. Blue bars
denote the amount of exploration interactions (in a VA system) whereas gray bars denote the
amount of interactions in the NTE. This view enables us to analyze and detect tool switches.
In addition, more detailed rectangles for different interaction types can be shown underneath.

Figure 7: Level Action Overview, showing different phases (top bar) and detailed interaction
(bottom rectangles).

5

3 API Description

The NTE is available as jar file and maven artifact. Please contact the authors (dominik.sacha@uni-
konstanz.de) if you are interested in using it. In the long term, we plan to release the source
code once we arrived at a stable version. However, the basic functionality is ready to be used
as a research prototype.

3.1 Integrate the Note Taking Environment

Through the Interface NoteTakingService the Note Taking Environment can be included in
external system. If the external System is based on Maven the Note Taking Environment could
be loaded to a Maven Repository and used as dependency with the following Maven Coordinates.

If the external system is not based on Maven the Note Taking Environment can be included as
a jar file.

3.2 Use the Note Taking Environment

3.2.1 NoteTakingService:

Figure 8: The NoteTakingService provides the shown functions.

6

3.2.2 Parameter description:

Function Parameter DataTyp Description null

bookmark image BufferedImage BufferedImage of the visualiza-
tion you want to bookmark

no

description String Description of the bookmarked
visualization.

yes

uncertaintyValue BookmarkUncertaintyInfo See Section ’Uncertainty’ yes

actions ArrayList<Action> List of actions you want to add
to your bookmark.If its null the
action list of the NTE is used

yes

imagePath String Path to a visualization you want
to bookmark

no

configuration IToolConfigurationAction this object provides the possibil-
ity to add a funtion to a visual-
ization. It will be performed if
the user double-clicks on the im-
age

yes

logAction name String Name of the action yes

type ActionType Type of the action. Enums are
defined in the NTE

no

level ActionLevel LoggingLevel of the action
Enums are defined in the NTE

yes

context Object Object describing the current
state of your system

yes

timestamp int Timestamp of the action yes

Action Logger:
Each Note Taking Service as an Action Logger, which manages the logged actions. If a user
preferes to use another Action Logger, the actions can be added to a finding over the bookmark
action. If the actionList of the bookmark action is null, the actionList of the Action Logger of
the used instance is taken.
As the NoteTaking Service is implemented as Singelton the first step you need to do if you want
to use a function of the interface is to get an instance.

NoteTakingService s e r v i c e = NoteTakingService . g e t In s tance () ;

3.3 Actions

An action has a name, an ActionType, an ActionContext, a LoggingLevel, an Object describing
the Systemstate and a timestamp. The name can be chosen by the user of the NTE, it is used
to show the action in an Action View.

7

3.3.1 ActionType

3.3.2 ActionContext

3.3.3 Logging levels:

are defined in the Note Taking Environment as well. Possible Levels are: EXPLORATION and
VERIFICATION. For logging in the Visual Analytics system use EXPLORATION.

8

3.4 IToolConfiguration

This object provides to possibility to implement a method that will be in the analysis system,
if the user double clicks on a finding in the Note Taking Environment. This method could for
example recover the system state of a certain visualization.

3.5 Use NoteTakingService:

s e r v i c e . logAct ion (” S e l e c t Player ” , ActionType .SELECT,
ActionContext .DATA, LoggingLevel .EXPLORATION, nul l , timestamp) ;

3.5.1 Bookmark:

A bookmark can be made with either the image path or a BufferedImage. In the NoteTakin-
gEnvironment a finding with the image and the given parameters will appear.

S t r ing imagePath = ”D: / ExamplePath ” ;
BufferedImage image = ImageIO . read (new F i l e (imagePath)) ;
// c r e a t e a BookmarkUncertaintyInfo Object and f i l l i t

with the unce r ta in ty va lue s f o r your bookmark
BookmarkUncertaintyInfo uncer ta in =
new BookmarkUncertaintyInfo (1 , nu l l , ” add ”) ;
s e r v i c e . bookmark (imagePath , ” d e s c r i p t i o n ” , uncerta in , n u l l) ;
s e r v i c e . bookmark (image , ” d e s c r i p t i o n ” , uncerta in , n u l l) ;

3.5.2 User Interface:

To work with the UI of the Note Taking Environment the following to functions provide the
possibility to get the UI or to show it:

s e r v i c e . getUI ()
s e r v i c e . showUI () ;

3.5.3 Callback Function:

To implement the possibility that users can perform a certain method with a double click
on a visualization, implement this method in the perform() method of an IToolConfiguration
implementation.

3.6 Uncertainty Information:

If your System works with one or more uncertainty calculations they can be added as additional
information. Therefor, a BookmarkUncertaintyInfo object should be created.

3.6.1 MeasureObject:

This Class describes an Uncertainty value your program has calculated. Use this class if your
program calculates more than one uncertainty value for one bookmark (e.g. one value for one
data point). You can add a weight to the value for calculation of the actual value out of all
uncertainty values.

9

3.6.2 MeasureList:

This class contains a list of all uncertainty values for one bookmark, belonging to one type, like
for example data uncertainty. The type can be chosen individually.

3.6.3 BookmarkUncertaintyInfo:

This is the main object for uncertainty information. Here you can declare the main value for
your bookmark. If you have more than one uncertainty type this can be handled in this class
as well, just add one MeasureList for each type.

Parameter:

Name Type Description Example

mainValue double Uncertainty Value calculated for
this bookmark.

1

measures ArrayList<MeasureList> Contains Different MeasureLists
with values for this Bookmark

×

formular String Formular with which the main value
is calculated.

average, ag-
gregate, sum,
product

If your system calculates just one value for a bookmark create a BookmarkUncertaintyInfo
object, add this value as mainValue and set the other parameters null.

10

