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Abstract
We present a visualization prototype for comparative analysis of factional anisotropy (FA) distributions constructed from three-
dimensional (3D) brain diffusion tensor imaging (DTI) in brain cohorts. The prototype lets brain scientists examine meta-
analysis (the pooled analysis of multiple smaller trials or multi-site studies) results for identifying differences in cohorts. In-
teractive side-by-side bar charts show multiple statistical results of FA comparisons in regions of interest (ROIs) defined by
user-chosen atlas. An occlusion-free two-dimensional (2D) semantic merge tree further displays the global distribution of FA
values. Two histograms on each tree arc reveal voxel-based FA distributions represented by that arc branch in cohorts. Interac-
tion techniques support brushing-and-linking of local and global ROIs queries. ROIs can be defined from atlas or select through
interaction. We report validation results in a case study and an interview.

1. Introduction

Recent large scale data gathering and analytics initiatives have ad-
vanced generalizable analyses and techniques by extracting and
combining human brain imaging data from subjects collected
worldwide regardless of imaging acquisition methods or popula-
tion under study [TSM∗14]. Some of the most important problems
are related to methods to combine the cohorts (predefined popula-
tion) to obtain pooled estimates through meta-(the pooled analysis
of multiple smaller trials or multi-site studies) and mega-analysis
(the pooled analysis of raw data to address subgroup differences
and interaction) approaches to estimate the general additive contri-
butions to the intersubject variance and to assist locate the affected
brain regions due to pathological conditions.

The wealth of information is however far too rich for a brain
scientist to take in at a single glance in the large imaging cohorts.
Even when multiple trials are designed to address the same ques-
tion, scientific conclusions may differ. Thus, visually communi-
cating and comparing meta- and mega-analysis results could po-
tentially assist interpretation of the analytical methods and offer
novel possibilities for publications [GDL∗11] One of the parame-
ters frequently used in these analyses is fractional anisotropy (FA)
extracted from diffusion tensor imaging (DTI) because FA values
are sensitive to tracts integrity discovered in many brain disor-
ders such as Alzheimer’s disease (AD) [OMA∗11] and schizophre-
nia [CHW∗15]. We also make use of FA values in this work because
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our collaborators are analyzing FA values to compare schizophre-
nia and control cohorts [JKN∗14,KGW∗16] as part of the ENIGMA
project [TSM∗14].

Communicating the cohort comparison visually is challenged
by dense brain volume and computational solutions. Current ap-
proaches to displaying large-dense datasets of brain imaging focus
on three solutions. The first is to center on the display hardware by
increasing the display size and using immersion and stereo to aug-
ment human perceptual capabilities [CCAL12]. However, this ap-
proach is not often available in brain scientists’ offices, where desk-
tops are the usual environments. The second approach is to simplify
the visualization to extract meaningful features such as topological
structures [TKW08,STS07]. While this approach is powerful, it has
the drawback that topology may not reflect critical brain functions,
since it is derived using geometrical concepts. The third approach
focuses on low dimensional representations and interactivity, i.e.,
using an embedding approach to yield 2D displays that can also
show tract clusters [CDZ∗09] or to optimize encoding to generate
occlusion-free 2D visualizations [JDL09].

All these works have focused on visualizing a single dataset
which is important to assess a particular mechanism which visual-
izations can be effective for. Studying cohorts requires one to show
distributions and to support comparative data analysis.

Most recently, Zhang et al. used semantic merge tree to compare
and encode cohort datasets [ZKH∗15]. That work contributes to
the semantic overlay onto the topological representation. As an ex-
tension of the prior paper, this paper presents mega-analysis result
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Figure 1: Brain cohort comparison interface: (a) The spatial view shows the selected brain regions with the context of a transparent cortex
mesh; (b) The merge tree constructed from average FAs in a cohort. (c) and (d) The regions of interest view to compare the control vs. patient
cohorts. (e) The control panel.

comparisons with simple interactive bar-charts for between-cohort
comparisons. We show the ability to visually convey both global
and local FA value differences, which to the best of our knowl-
edge is the first for a DTI cohort comparison. We also generate a
condensed representation of a merge-tree to substitute the generic
contour tree and make use of the merge-tree to select and add user-
defined regions. Further more, a web version [ZKHC16] of this vi-
sualization tool is soon to be integrated with the ENIGMA project
to be broadly disseminated to the brain imaging community to dis-
play cohort variances.

2. Background in Brain White Matter Analysis and
Comparative Studies

Brain white-matter integrity is often measured using FA values de-
rived from DTI. Brain scientists on our team are interested in under-
standing FA value changes in schizophrenia patients. Performing
cohort-based analysis is important to demystify the results’ differ-
ences in the brain science literature. While most recent advances
in tensor field visualization focus on tensor field visualization with
uncertainty by looking into local measurement and multi-level of
details [AWHS16], ours focuses on synthesizing and communicat-
ing results from cohorts rather than showing local tensors from a
set of individual measurements.

3. A Two-Stage Approach for Cohort Comparison

This section presents our contributions for comparative visualiza-
tion of mega-analysis results and merge tree construction of FA
values. We also present the interface design for data exploration.

3.1. Mega-Analysis in Cohorts

3.1.1. Analytical Approaches

The goal in mega-analysis is to merge ROIs and compare ROI
differences in brain cohorts. We have followed the automatic ap-
proaches in Kochunov et al. [KGW∗16] to perform the mega-
analysis. We first construct ROI-based statistics using template-
based white matter volume deformation analysis [KLT∗01] and
then compare these regions in cohorts using voxel-based statisti-
cal comparison of FA values.

A common skeleton mask is generated and every subject’s de-
formed volume is sampled through the skeleton mask to provide
FA value for each ROI using atlas-based approach. Our tool sup-
ports the JHU atlas [WJNP∗04]. This process is followed by us-
ing the mapped skeletonized volume data in the cohorts to conduct
tract-based spatial statistics (TBSS) [SJJB∗06] and compute aggre-
gated measurements-to-skeleton mapping [JKS∗13]. Global whole-
brain and regional FA values were extracted using the ENIGMA-
DTI protocols and statistics were modeled to study tract-specific
measures of FA values.
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3.1.2. Visualization of Mega-Analysis Statistics

Brain scientists perform comparative analysis from different
anatomical regions in cohorts. These analyses often present differ-
ent results due to different empirical study approaches and param-
eter settings etc. While showing the details will lead to answering
questions why study results may differ, here we present the first step
to visualize the value distribution in interactive bar charts. Brain
scientists can directly compare results to locate the import brain
regions and find differences.

Figure 1 (c and d) show the ROI statistics from two data col-
lecting sites; each data site includes one control and one diseased
cohorts. Within each cohort, we use two rows of bar-chart to en-
code the sorted p-values or other statistical measures (e.g., effect
size) from high to low. Each bar represents an ROI derived from
that atlas in that cohort or defined by the user (see Section 3.3).

The top bars encode the effect size with a diverging color
scheme [Mor09], where positive effect size (when control cohort
has higher average FA, and vise versa) is mapped to red and nega-
tive is mapped to blue. The effect size is encoded using saturation.
The more saturated colors represent larger effect size. The bottom
bars are the normal distribution plots of regional FA values for con-
trol (blue) and diseased (red) cohorts.

Because regional connectivity can aid brain scientists to identify
regions of interest, these connectivities between regions are shown
as links (at the bottom of the ROI bar charts in Figure 1(d)) filtered
by the ratio of common tracts shared between regions measured by
the Jaccard index.

3.2. Semantic Merge Tree

The purposes of creating merge tree are two-fold. The first is to
generate an occlusion-free representation for showing FA value dis-
tributions. The benefit is for the ease of exploration of the compli-
cated 3D brain volume. The second goal is to let the user select
interesting regions based on FA values. The purpose of this display
is not to study the functional aspects of the brain imaging.

3.2.1. Construction and Space-Saving Layout

We have constructed a merge tree [BWT∗11] to create a more com-
pact representation than the contour tree in Zhang et al. [ZKH∗15].
The split tree in the generic contour tree is not necessary because
ROIs are associated with higher local FA values and these values
can be sufficiently represented using upper arcs in the join tree. A
benefit of excluding the split tree is that the final tree does not con-
tain any downward arcs and is thus edge-crossing free [GGT96].
Our merge tree is computed using the averaged skeletonized data
from the control cohort. The arcs are arranged vertically and an
arc’s vertical position encodes the range of the FA values. Trees are
also pruned to reduce the number of contour branches. The seman-
tic mapping on these arcs follow Zhang et al. [ZKH∗15].

We have optimized the tree layout using a branch-based method
in order to generate a more compact layout than that in Zhang et
al. [ZKH∗15]. A branch rooted at an arc is defined to be the path
from this arc to one of the leave arcs that has the highest vertical co-
ordinate. Zhang et al.’s layout algorithm works on the subtree level:

each subtree will be allocated space equals to its bounding box, re-
sulting in larger horizontal span in the bounding box corners. Our
method saves space by laying out on the branch level: an arc can be
placed within the bounding box of the adjacent subtree. Figure 2a
illustrates a case where the blue subtree is moved to the side of the
green subtree to improve the space utilization.

(a) Improved layout: left: previ-
ous, right: improved (b) Tree arcs’ semantic encoding

Figure 2: Space-saving merge tree construction and FA distribution
and location encoding

3.3. User-Defined ROIs

Since the merge tree can display the FA value distribution where re-
gions of similar FA values can be easily selected, we have allowed
the user to select interesting FA values and to generate user-defined
ROIs associated with these FAs. The user-defined ROI can also be
inserted into the bar-chart ROI maps created from atlas. Subsequent
statistical analysis for the newly generated ROI can also be per-
formed and compared between cohorts 3a.

3.4. Visualization Interface

The user interface consists of a multiple view display and a control
panel (Figure 1) Panel-a is a 3D spatial view of selected ROIs, gen-
erated using the isosurface tracking algorithm [CSvdP04]. We ren-
der a transparent brain cortex mesh in the spatial view as a spatial
context. The mesh has its alpha modulated with α = (1−|~n ·~e|)c,
where~n and~e are the normalized normal direction and viewing di-
rection respectively. This method preserves the curvatures of the
gyrus and sulcus [PTKK03]. Panel-b contains the merge tree visu-
alization of FA distributions; Panels-c and -d are the ROI statistics
visualizations of two datasets. Panel-e contains a control panel for
adjusting rendering and filtering parameters. The interface was im-
plemented using GLUI [RS16] and the web-version [ZKHC16] was
implemented in WebGL.

Brush-and-link interactions are provided to select ROIs. Select-
ing a ROI in one view will highlight the corresponding ROIs in all
other views. The user can also expand or squeeze any ROIs to fit
their analytical needs. Those regions that are not of current interests
are shown in thinner bars to kept in context and can be expanded.

4. Validation of Our Mega-Analysis Toolkit

This section reports preliminary validations using a case study and
an interview. Below we first show a case study executed by a brain
scientist named Lucy.
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4.1. Case Study: Mega-analysis of Regional Differences in
Two Cohorts

Lucy has obtained two datasets from two different labs, where the
the first dataset consists of 122 control and 127 schizophrenia pa-
tients and the second contains 62 control and 81 schizophrenia pa-
tients. She is interested in learning effect size significances between
patient and control cohorts in these two datasets.

Lucy begins her study right away to confirm the data analysis
results. She first loads the first datasets; the JHU atlas is automati-
cally applied to show her analysis results of those regions, such as
fornix (FX), genu of corpus callosum (GCC), left of sagittal stratum
(SS-L), right and left of anterior corona radiata (ACR-R and ACR-
L), splenium of corpus callosum (SCC), and body of corpus callo-
sum (BCC). These regions are shown with saturated red indicating
patient-control differences: the white matter (WM) deficits are sig-
nificant in these regions, in consistent with literature in schizophre-
nia [FKS∗09, FRLA∗11].

Lucy is interested in examining if the same pattern presents in
the second dataset obtained in a different lab. When she clicks to
add the second dataset, another ROI dual-row bar charts reveal the
FA values in these 62 controls and 81 patients. She sets the signif-
icance level of the effect of the effect size to p < 0.01 to accom-
modate for the smaller sample size in this dataset. She sees that
the bar-charts views gets updated where the four most important
ROIs which meet the significance level constraint are expanded to
the full-width bars. These four regions are the left and right regions
of both FX/ST (Fornix (cres) and Stria terminalis) and SFO (supe-
rior fronto-occipital fasciculus) (or FX/ST-L, SFO-L, SFO-R, and
FX/ST-R.)

To compare these results to the results obtained in the first
dataset, Lucy highlights all regions that are significant in one of
these two datasets by clicking in both dual-row bar-charts. The vi-
sualization of these collected regions is then shown in Figure 3a.
Lucy sees that the BCC and SCC regions in the second dataset are
not as important as those in the first one.

To learn the locations of these regions in both datasets, Lucy
selects all regions in Figure 3a, the corresponding regions in the
spatial view are shown (Figure 3b to 3d). She concludes that
FA deficits measured in these regions of the brains differ between
datasets since the colors (indicate effect size) of these regions are
very different.

4.2. Discussion

We have several extensive discussions with two brain scientists who
study DTI mega-analysis on a daily basis and who are paper co-
authors. The dual-row bar-charts are designed with these two brain
scientists and they both felt that those charts worked very well to
communicate the analytical results. They also liked the brushing-
and-linking among all views and felt that the three-dimensional
representation was also intuitive and visually pleasing. Their feel-
ings on the usefulness of the merge-tree were mixed: one brain sci-
entist felt that this method carried potentials but was too abstract
to be useful; the other scientist was intrigued by this approach, es-
pecially for new ROI construction and thought it might be worth
further improvement.

(a) Comparison between data from 1st (top) and 2nd (bottom) dataset

(b) 1st dataset (left view) (c) 1st dataset (superior view)

(d) 2nd dataset (left view) (e) 2nd dataset (superior view)

Figure 3: Meta-analysis on two datasets from two collection sites.

5. Conclusions

We have provided two complementary approaches for visualizing
mega-analysis results in brain cohorts using dual-row bar charts and
merge trees in a multiple view environment. Our preliminary results
on studying the use of the tool for cohort comparisons suggest:

• Bar charts overlaid with statistical results provide effective
multiple-view displays for cohort comparison related to ROI
analyses.

• Interpreting the occlusion-free merge tree is visually challenging
despite it shows a global overview of the FA value distributions.

• Interactive visualization methods to customizing ROIs will be
useful to study regions not defined in brain atlas.
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