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Abstract

Recently, much research has focused on developing techniques for the visual representation of temporal graph
data. This paper takes a wider look at the visual techniques involved in exploratory analysis of such data, consid-
ering the variety of sub tasks and contextual tasks required to understand change in a graph over time, and the
visual techniques which are able to support these tasks. In so doing, we highlight a number of tasks which are less
well supported by existing techniques, which could prove worthwhile avenues for future research.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [INFORMATION INTERFACES AND PRE-
SENTATION]: User Interfaces—Graphical user interfaces (GUI)

1. Introduction

Temporal graph visualisation techniques seek to support our
understanding of networks that change over time. Much of
the work in this area has focussed on the representation of
network change, such as the development of dynamic graph
layout algorithms, and assessing the performance of differ-
ent visual encodings. Recent work has classified existing
techniques for representing this data [BBDW14] and consid-
ered the design space of possible representations [KKC14].
In this paper we review more widely the visual techniques
which can support tasks involved in exploratory analysis of
temporal graph data. While the goal of analysis is often to
simply understand how a graph has changed over time, many
smaller sub tasks may be involved, such as comparison of
the graph at different times, observing temporal trends in in-
dividual data items, or comparing evolution over different
time intervals. We may also be interested in contextualis-
ing our findings, for example, by comparing the evolution
in one part of a graph with that of another. Kerracher et al.’s
task taxonomy [KKCss] considers the range of such possible
tasks involved in exploring temporal graph data.

This work is influenced by Wehrend and Lewis [WL90],
who propose a “problem-oriented approach” to tool clas-
sification: they categorise techniques according to the sub-
problems supported, resulting in a task-technique ‘cata-
logue’. Their approach is intentionally application-domain
independent to allow users from different domains to share

methods. We consider examples of techniques from both the
temporal graph literature and wider research areas for the
support of the temporal graph tasks identified in [KKCss],
and identify a number of gaps in task support which could
benefit from further research.

2. Exploratory Tasks for Temporal Graph Data

The task categories of [KKCss] are based on the Andrienko
framework [AA06], which takes a functional approach to
specifying tasks. There are two components to every task:
the target (unknown information) to be obtained, and the
constraints (known conditions) that information needs to ful-
fil; a task involves finding a target given a set of constraints.
Task types are distinguished according to the data items par-
ticipating as targets or constraints: lookup (find the value of a
given item or items with a given value), comparison (find the
relation between two items), and relation seeking (opposite
of comparison: find data items related in a given way).

[KKCss] further classify tasks in the temporal graph case
according to the data items that participate, dividing them
into four categories (“quadrants”, Figure 1): Q1 individ-
ual graph elements (nodes, dyads), time points, and corre-
sponding attribute values; Q2 individual time points, graph
structures and corresponding attribute distributions; Q3 in-
dividual graph elements and corresponding attribute values,
over time intervals; Q4 graph structures and corresponding
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Figure 1: Four task categories (“quadrants”)

attribute values over time intervals, and distributions of tem-
poral trends over the graph structure.
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Figure 2: Variations in comparison tasks according to the
involvement of the same or different time and graph compo-
nents

Applying the task types in each quadrant produce
markedly different tasks e.g. comparison in Q2 involves
comparing graph structures or attribute distributions over
graph structures; in Q3, comparison of temporal trends in in-
dividual attribute values, or patterns in connectivity between
dyads; in Q4 comparison of evolving graph structures or dis-
tributions of temporal trends over (sub)graphs.

A further task distinction relates to the different targets
of analysis. Direct tasks concern finding or comparing struc-
tural patterns or attribute components (values or patterns) as-
sociated with known graph components at known times (e.g.
finding the pattern of connectivity between a particular set
of nodes at time 1). Conversely, inverse tasks compare the
times and/or graph components associated with a particular
occurrence of a structural pattern or attribute value or pat-
tern (e.g. finding the set of nodes belonging to a particular
cluster, or the time period over which a cluster grows). Task
search space depends on which components are specified;
four variations are possible: no search (time and graph com-

ponents are specified i.e. direct tasks); graph search (time is
specified, graph component is not—requires searching the
entire graph); temporal search (graph component is speci-
fied, time is not—requires searching the entire time period);
graph and temporal search (neither component is specified—
requires searching the whole graph at all time points).

Further sub-variations of the comparison and relation
seeking tasks depend on whether the task involves the same
or two different time points/intervals, the same or two differ-
ent graph objects, and the same or two different attributes;
the seven possible combinations are given in the Table in
Figure 2 and can be applied in each of the four quadrants,
resulting in 28 task variations.

3. Mapping Visual Techniques to Tasks

3.1. Lookup

Direct and inverse lookup tasks require different techniques
for their support, as they take a different starting point for
the analysis; the distinction reflects the bottom up (“search,
show context, expand on demand” [vHP09]) and top-down
(“overview first, zoom and filter, then details on demand”
[Shn96]) information seeking approaches discussed more
widely in the literature. For direct lookup we must first lo-
cate the time and graph object of interest, in order to find
the corresponding values and patterns. This requires naviga-
tion in both time and in the graph. Many systems employ-
ing sequential (animated) views offer temporal navigation
via interactive controls such as timesliders, or thumbnails
[BPF14b], often in conjunction with some statistical sum-
mary information e.g. [ATMS∗11]. [CGS∗09] allow users
to select a time period of interest. Static graph systems, such
as TaxVis [GK08] often offer a separate search box and
list to filter and then highlight nodes of interest within the
graph. [CGS∗09] offer this functionality and also highlight
in their timeline view the time points at which the selected
nodes appear. Interaction techniques such as pan and zoom
are also of use when locating graph elements in large graphs.

Inverse lookup tasks involve observing patterns and at-
tribute values and identifying the corresponding graph ob-
jects and times of occurrence. Visually representing the four
categories of data items involve very different techniques
and research areas (Figure 3): Q1 (data elements and their at-
tributes) is governed by general visualisation principles; Q2
is dealt with by static graph visualisation; Q3 is the domain
of temporal visualisation; while Q4 is the only quadrant re-
quiring the representation of both time and graph structure,
and therefore temporal graph visualisation techniques. How-
ever, any of these data items and associated techniques may
feature in the exploration of temporal graph data. Within
each category, decisions as to the appropriateness of a visual
representation will depend on characteristics of the specific
dataset; for example, when selecting a technique to encode
graph structure (Q2), the size and density of the graph must
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be taken into consideration; when showing structural change
over time (Q4), the rate of change and length of timeseries
may influence our choice of representation.

Figure 3: Research areas and techniques associated with
data items by quadrant

When representing Q4, all of the techniques in Kerracher
et al.’s design space [KKC14] show graph evolution over
time, with the exception of nested views, which show the
distribution of temporal trends over the graph. The timeslice
views (sequential, juxtaposed, additional spatial dimension)
also show a snapshot of the graph at an individual point in
time (i.e. a Q2 representation). In Q2, finding structural pat-
terns such as clusters is supported by the layout algorithm
used. In dynamic graph drawing there is a trade-off between
local (at each time point) and global (over all time points)
layout optimisation; [BPF14b] offer layout stability controls
to allow users to optimise the layout, while [PRB08] offer
a choice of layout algorithm. Graph filtering techniques can
help find graph objects associated with particular attribute
values, while interaction techniques including filtering, clus-
tering, grouping, simplification [SD13] and network motif
glyphs [DS13] all may help find structural patterns.

For Q3, nested views e.g. [SLN05] [YEL10] show tem-
poral trends of nodes or edges embedded within the graph
structure. Temporal trends can also be combined with other
representations: TimeFluxes [ITK10] connect the same node
in two different timeslices of a 2.5D representation, and dis-
play timelines of attribute values for user selected nodes;
vertex small multiples [BPF14a] can be selected from a ma-
trix cube view to show connectivity patterns between in-
dividual nodes over time. Some systems focus specifically
on individual temporal trends: LinkWave [RCM∗14] visu-
alises temporal trends in connectivity for all pairs of nodes
in a graph, while NetVisia [GGK∗11] displays temporal

node statistics in a heatmap. Techniques to filter, or reduce
timeseries data to reveal temporal patterns of interest e.g.
[ARH12] are of potential use here.

Depending on the task search space, only a sub section of
time or graph may need to be displayed. Where the search
space is time, highlighting or filtering of the graph or set of
timeseries can be used to show only the graph object of in-
terest. If the search space is graph, only the time period of
interest need be selected and shown e.g. [CGS∗09]. Where
the search space is both time and graph, showing the whole
graph over all timepoints is necessary, and may require in-
teraction techniques to allow users to navigate the whole
dataset while searching for patterns of interest.

Once a pattern or value of interest is observed, the cor-
responding time steps and graph objects must be identi-
fiable. Nodes are often identified using details-on-demand
strategies, such as showing labels on mouse-over. Similar
labelling strategies can be employed where a timeline is
present, or individual timeslices can be time stamped in se-
quential views e.g. [LS08]. As tasks may be chained, some
way of marking found graph items and/or time points for use
in subsequent tasks can be supported, for example, nodes of
interest are often highlighted via selection mechanisms for
tracking over time e.g. [ITK10] [FAM∗12] [BPF14b].

3.2. Comparison

Visual techniques appropriate to support comparison tasks
depend largely on what we are comparing—graph objects,
times, attribute values, structural patterns—as distinguished
in the quadrants. Gleicher et al.’s [GAW∗11] three basic pos-
sibilities for visual comparison—juxtaposition (placing rep-
resentations side by side), superposition (overlaying repre-
sentations in the same display space) and explicit encod-
ing (where the relationship between the two items is cal-
culated and explicitly represented)—are applicable to all
quadrants. Temporal graph visualisation is heavily related
to graph comparison, and Q2 can draw on a large body
of literature in this area. Layout, transitioning, differenc-
ing, and matching techniques can all be used to support
graph comparison. Most temporal graph systems focus on
comparison between adjacent timeslices; a few systems sup-
port comparison of non-adjacent timeslices through use of
transitioning techniques [BPF14b], filtering of a small mul-
tiple display to allow juxtaposed comparisons [FHQ11],
or selection of timeslices for use in comparison views
[ITK10] [ZKS11]. [ZKS11] offers juxtaposed and super-
imposed views, and ‘relative re-layout’ of graphs to facil-
itate comparison. [ITK10] offer juxtaposed, superimposed,
and animated views, and consider methods for computing
layouts in such cases. Positions of nodes in the timeslices
are synchronised, and co-ordinate panning and zooming in
the graph, and highlighting of nodes is employed. DGD-
tool [PRB08] allows users to select and compare multiple
timeslices and apply different layout algorithms.
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Comparison in Q2 also relates to comparison of graph ob-
jects in the same timeslice: additional support for this may
be required for large graphs where the components being
compared are distantly positioned in a crowded display. Du-
alNet [SNGS07], a static graph technique, allows selection
and comparison of two different parts of the same network,
in linked side-by-side views.

Comparison of graph attributes is generally not well con-
sidered in the literature. [ABR∗13] consider techniques for
weighted graph comparison, and some support is offered in
temporal graph systems e.g. [EHKW04] [TS07]. Little at-
tention has been given to comparison of different attributes
e.g. comparing the distribution of attribute A with attribute
B. This could be an interesting challenge, where the graphs
in question occur at different timepoints or are selected from
different parts of the graph.

Comparison in Q3 is little considered by the temporal
graph literature. Nested views show individual temporal
trends in the same display space, which allows compari-
son to some extent. However the conditions are not opti-
mal due to the limited space available to show each time-
series, and their spatial positions are determined by the graph
layout. Comparison is better supported where timeseries
are aligned, as in [RCM∗14] and [GGK∗11]. With regard
to comparison of different attributes, TimeMatrix [YEL10]
supports comparison of the temporal behaviour of two dif-
ferent types of edges between the same pair of nodes, and
comparison of different attributes over time for an individ-
ual node or edge. Techniques for more flexible selection of
timeseries associated with different graph objects, time pe-
riods, and attributes, for use in comparison tasks could be
considered when designing temporal graph systems.

Comparison of data items in Q4 (evolving graphs or tem-
poral distributions over graph structures) is not well docu-
mented in the literature. [SLN05] and [YEL10] allow multi-
ple attributes to be displayed in their timeseries glyphs, po-
tentially supporting comparison of temporal distributions of
different attributes over the graph. MatrixFlow [PS12] offer
a juxtaposed view of the evolution of three co-occurrence
matrices aligned over the same time period. [ITK10] sup-
port comparison of evolution of two different graphs: at each
time point, a timeslice from each graph is combined in one
of three ways (aggregate, pile, or split view, reflecting Gle-
icher’s [GAW∗11] approaches). These combined timeslices
can then be visualised using the temporal layouts offered by
their system (animation, juxtaposition, 2.5D, merged and su-
perimposed views). An interesting direction for future re-
search would be to adapt these techniques to explore the
possibilities relating to comparison of different parts of the
graph, different time periods, and different attributes, and
also assess the effectiveness of combinations of comparison
techniques and the temporal encodings (e.g. is comparing
sequential (animated) views side by side an effective way to
compare structural change over time?).

In inverse comparison, in order to compare the times or
graph objects associated with a value or pattern of interest,
these must be identifiable to the user (as discussed in the
lookup tasks). Assessing the connectivity of two graph ob-
jects can be supported by highlighting the edge/path between
two selected nodes. PaperLens [LCRB05] (for static graphs)
allows the selection of two nodes from a drop down list, and
displays the “degree of separation links” between them.

One final variation of comparison tasks is where the com-
parison involves a specified value or pattern (i.e. one not nec-
essarily found in the data), e.g. a particular graph motif or
pattern of graph evolution; in this case a system may need
some way to visually represent this for use during analysis.

3.3. Relation Seeking

Relation seeking is the opposite of comparison, in that
we want to find items—graph objects, times, attribute val-
ues, patterns—related in a given way. Many of the com-
parison techniques also support relation seeking. Match-
ing techniques—which find common elements between two
graph representations—can be considered relation seeking
techniques; [HD12] note the use of three different ap-
proaches: visual links, colour coding, and brushing and link-
ing. In the graph structural case, relation seeking may in-
volve connections between graph objects e.g. ‘find the nodes
connected to node A’; highlighting nodes linked to a selected
node is a common technique to support this task.

TimeSearcher [HS04] is a good example of a technique
supporting relation seeking in Q3: specifying a slope and
tolerance results in all timeseries with a similar slope being
selected. An opportunity for future research could be the de-
velopment of similar visual analytics tools to find structural
patterns in Q2 and Q4 e.g. highlighting potentially similar
clusters or motifs, or similar patterns of graph evolution.

4. Conclusions

We have presented our work in mapping visual techniques
to the exploratory tasks for temporal graphs which they sup-
port; a summary is included in the supplementary material.
We anticipate the usefulness of this mapping during the de-
sign process, particularly when selecting techniques for in-
clusion in systems.

The four categories of data items which may participate
in tasks distinguished in [KKCss] demonstrate the need to
incorporate techniques from a wider range of research areas
than those specifically associated with temporal graph rep-
resentation, in order to effectively support the tasks which
may be of interest when exploring temporal graph data.

We identified a number of areas for further research, in-
cluding techniques to support the comparison of data items
in Q4, and plan to investigate this area in our future work.
We also plan to make use of our mapping in the design of a
new temporal graph visualisation application.
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