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Abstract
We present an improved seeding strategy for sparse visualization of electrostatic fields. By analyzing the curvature
of the field lines, we extract points of extremal field strength between charges of different sign and use them to
seed field lines, which consequently connect the corresponding charges. The resulting sparse representation can
be seen as an extension to classic vector field topology depicting properties otherwise hidden. Finally, by applying
our method to a synthetic data set, we show its benefits over previously published work.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation J.2 [Physical Sciences and Engineering]: Physics—

1. Introduction

Static fields of point charges appear in physics in a broad
range of applications connected both to Newton’s theory of
gravity and to electrostatics. In said situations, while the
scalar potential plays an important role, it is often equally
important to investigate force field properties, in particular
by means of appropriate visualization techniques [SS96].

When visualizing 3D vector fields by means of a dense
representation, visual clutter is inherent. A sparse repre-
sentation, though, needs to be based on a meaningful and
representative set of vector field features. A common way
to achieve this are topological skeletons. However, existing
methods for classic topological skeletons do not capture cer-
tain aspects of point-based force fields, namely, the interac-
tion between two adjacent differently signed charges (DC).
When following a field line between two adjacent DC, there
will always be one point of minimal field magnitude, since
the field magnitude diverges at the DC. The set of these min-
imal points forms a surface. A sparse representation of the
interaction between the DC can thus be obtained by seeding
a single field line at the location where the field strength is
locally maximal with respect to this surface. This represen-
tation complies with the visual metaphor of drawing more
dense field lines at locations of locally higher field strength
that is often used in physical sciences and engineering for
gravitational or electrostatic fields [WVHW96]. Mathemat-
ically equivalent to this, Handa et al. [HKT01] developed a
seeding strategy based on points of extremal field magnitude
and zero vector field curvature as an extension to classic vec-

tor field topology. However, we found examples of charge
distributions where their technique fails to capture the full
set of seed points. This happens in particular in cases where
one of the DC takes part in a cluster consisting of several
equally signed charges (EC) that are very close together, as
might be the case in Molecular Dynamics simulations.

We present an improvement to the seeding strategy pre-
sented in [HKT01]. By generalizing their definition of crit-
ical points, we manage to create a more complete represen-
tation of the charge interaction. We apply our technique to
a representative synthetic data set and highlight details that
cannot be found by employing common visualizations for
vector field topology or the method presented in [HKT01].

2. Related Work

Vector field topology was introduced by Helman and Hes-
selink [HH89] and later extended to the 3D case [GLL91].
Several authors have presented methods to create topologi-
cal skeletons and other sparse representations of vector fields
[LHZP07, PPF∗11, TWHS03].

Previous work dealt with the visualization of both elec-
trostatic fields and the more general electromagnetic fields.
In [SCT∗10, SCTC12] toroidal magnetic fields were inves-
tigated. In [Sun03], a dynamic line integral convolution for
magnetic fields is presented, which exploits the equations
of motion for test monopoles in electromagnetic fields to
define the motion of field lines. This principle is also re-
ferred to in [BO03], where a mathematical discussion of
field line velocity is given. Further related work deals with
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Figure 1: A 2D electrostatic field based on three charges
(q− = −1.0 and q+ = 0.5). The texture shows the curva-
ture κ. In addition, the isoline for κ = 0 is shown in white
(dashed) and the isoline for d|E|/dt = 0 is shown in cyan
(dashed). The intersection points of both isolines (diamond)
are used as seed points.

solar dynamics data [MSM∗12] or dipole fields [GBM∗12].
In [THK∗05], a technique is presented to extract higher or-
der critical points from vector fields, more specifically, the
electrostatic field of a benzene-molecule. Furthermore, it has
been shown that critical points can be extracted analytically
from point based vector fields if the locations of the point
charges are known [MW09].

Close in spirit to our work is the technique presented in
[BSW∗12], where 2D magnetic flux topology is introduced.
The algorithm is based on finding Morse-Smale cells in a
dual field and choosing a representative seed point based on
the mean potential. Similarly, we could search for Morse-
Smale cells in our data, since every field line that connects
two DC is inside a Morse-Smale cell of the electrostatic
force force field. An alternative would be to analyze the
basins of attraction for the individual point charges. How-
ever, both of these approaches are computationally heavy
and do not agree with our aim to only use local computations
for seed point generation. Furthermore, we would still need
to find a distinctive criterion to choose a field line for each
connected pair of DC to make visualizations of different data
sets coherent and, thus, comparable. Our method is an ex-
tension to the algorithm presented by Handa et al. [HKT01],
who have presented a seeding strategy for electrostatic fields
that extracts a sparse set of seed points using local vector
field properties.

3. Theoretical Background

Force fields created by systems of point charges appear in
various applications in physics. Interaction between electri-

cally charged or massive bodies can be described by an elec-
trostatic or gravitational potential φ. In both cases, the cor-
responding force field is defined as the negative gradient of
the potential function, E =−∇φ, and has the form

E(r) =C
N

∑
i=1

Qi
r− ri

|r− ri|3
(1)

for N particles. Here, Qi are the masses or electric charges at
the locations ri, respectively, and C is a constant that depends
both on the type of field and the units used. The point charges
are sources or sinks of the field depending on their sign. The
real field E diverges at the locations of the point charges,
however, as we use linear interpolation, this behavior is not
reflected in our data.

4. Field Line Seeding

In [HKT01], Handa et al. introduce a new class of critical
points that can be seen as an extension to the classic topo-
logical skeleton by Helman and Hesselink [HH89]. This new
class of points is based on the observation that each field line
that connects DC contains a point where the field magnitude
|E| becomes minimal while E does not vanish (see Figure 1).
These points cannot be found using conventional methods,
which require E = 0.

The set of all points with extremal field magnitude forms
an isosurface

I =
{

p ∈ R3
∣∣∣∣d|E(p(t))|dt

= 0
}
, (2)

where t represents a parametrization of the respective tan-
gent curve. I is pierced by all field lines connecting a pair
of DC (c.f. Figure 1). A sparse representation of DC interac-
tion can then be created by choosing a suitable subset of this
set of lines. To this end, Handa et al. propose an alternative
formulation of the problem of finding critical points using
the directional derivative of E (refer to [HKT01] for a de-
tailed derivation). According to the new formulation, critical
points in E are given by

dE
dt

=
d|E|
dt

e1 + |E|2κe2 = 0. (3)

This includes regular critical points where |E| = 0. From
Eq. (3) follows that critical points with |E| > 0 are charac-
terized by d|E|/dt = 0 and κ = 0 (c.f. Figure 1). Hence, the
algorithm chooses from all points on I those with zero cur-
vature. Handa et al. refer to these new critical points as dy-
namic critical points and we adopt this term in the remainder
of this paper. Note that, while κ is undefined at locations of
regular critical points, it is well-defined at locations of dy-
namic critical points, since there |E(t)|> 0.

We noticed that, while the method of Handa et al. allows
to capture connective field lines for DC in most cases, it fails
to extract them between clusters of charges (where some EC
are sufficiently close to each other), since not all of the in-
teractions lead to a zero curvature point on I. We, therefore,
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propose to extend the set of points given by Eq. (3) to contain
locations on I, where κ is locally minimal on I.

In order to find our newly defined seed points, we compute
κ and its partial derivatives in Euclidean space projected to
I. We explicitly compute the curvature κ of the field lines
using E and its directional derivative dE/dt as proposed in
[Far02, WT02] by

κ(t) =
|E(t)×dE/dt|
|E(t)|3

. (4)

The projected gradient w is defined by

w =∇I× (∇κ×∇I). (5)

In order to extract a set of potential seed points, we first
search for null points of the vector fields

v1 =

d|E|/dt
wx
wy

 ,v2 =

d|E|/dt
wy
wz

 ,v3 =

d|E|/dt
wx
wz

 (6)

using Newton-Raphson iteration. Subsequently, we classify
the found points by computing a 2D-Jacobian with respect
to a local tangential parametrization of I and take all points
that are local minima of κ on I, which includes the points
found by Handa et al. Furthermore, we omit points that
emerge twice at the same position, which happens, e.g.,
when ∇κ = 0, hence at the original dynamic critical points.
Finally, we follow Handa et al. in classifying the dynamic
critical points as minimum (for d2|E|/dt2 > 0) and maxi-
mum (for d2|E|/dt2 < 0) extreme points, respectively. For
us, minima are particularly important, since they act as a rep-
resentation of interaction between two DC.

While our approach concentrates on the interaction be-
tween DC, we do not want to neglect the relation of ad-
jacent EC. This relation is particularly relevant in vector
fields that contain only sinks or only sources (e.g. in grav-
itational fields). We, therefore, combine our connective field
lines with separation surfaces and streamlines in the out-
flow and inflow directions to represent saddles in the field
E. This rather simple visualization representing classic vec-
tor field topology is sufficient for our input data. In more
complicated vector fields further simplification of the topol-
ogy (e.g. [THK∗05]) or more sophisticated visualizations
(e.g. [TWHS03]) might be necessary.

5. Results

We now compare the results of our method with ones ob-
tained by using the method of Handa et al. We use a syn-
thetic data set containing a neutral system of three particles
with p1 = (−1.5, −0.75, 0.05), p2 = (1.5, −γ, 0.05), and
p3 = (1.5, +γ, 0.05), as well as q1 = −1.0 and q2,3 = 0.5,
where 0.0≤ γ≤ 1.5. E is computed using Eq. (1), with C = 1
and is sampled on a grid (200× 182× 108). The bounding
box is originated at (−1.75,−1.7,−1.0) with side lengths

lx = 3.75, ly = 3.4, and lz = 2.0. A continuous representa-
tion is obtained by linear interpolation. Furthermore, we use
a fourth order Runge-Kutta scheme for all integration steps.

When gradually decreasing γ, we can make out three
phases. Figure 2 shows key moments of this development.
Phase one lasts from γ ≥ 1.5 to γ & 1.005 (Figures 2a, 2b).
Here, both methods deliver the desired result of two dis-
tinct connective field lines (based on the minimal dynamic
critical points) for both pairs of DC. Phase two lasts from
γ ≈ 1.005 to γ ≈ 0.825 (Figures 2b, 2c, 2d). During this
phase the curvature zero line penetrates I only in one loca-
tion of minimal field strength. Consequently, the method of
Handa et al. leads to one connective field line based on this
location. There is also a maximum dynamic critical point
that is found near the saddle point between the two EC.
Our method finds an additional minimum point (in cyan,
see arrow). Figure 2b captures the moment where this ad-
ditional minimal point emerges from the maximum point.
Phase three lasts from γ . 0.825, where the additional min-
imum found by our method vanishes, to γ = 0 (Figures 2e,
2f). Subsequently, neither our method, nor the one by Handa
et al. lead to two minimal dynamic extremal points. Finally,
for γ = 0 we obtain one line connecting the negative charges
and the (now superimposed) positive charges as expected.

6. Conclusion & Future Work

We presented an improved seeding strategy that creates a
sparse representation of the interaction between adjacent DC
in electrostatic fields, thereby complementing conventional
vector field topology. By applying the method to a represen-
tative synthetic data set, we showed that our method deliv-
ers better results in comparison with previous work, which
failed to deal with closely-packed clusters of EC. Nonethe-
less, we still found cases, where both previous work and
our approach fail to find all the desired features. Therefore,
creating a complete representation of all the interactions be-
tween DC (including close-packed clusters) remains a chal-
lenge and is subject to future work.

In addition, we want to investigate possibilities to ex-
tend the approach to more general (non-irrotational) fields.
Particularly, we want to consider the electrodynamic case,
where electric and magnetic fields necessarily have to be
treated together. Furthermore, we plan to apply our method
to more complicated force fields, for example in the context
of Molecular Dynamics simulations, testing the robustness
of the seeding strategy more extensively with different nu-
merical approaches (e.g. PME, Coulomb summation).
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Figure 2: A synthetic 3D data set consisting of three point charges. Column one shows the electrostatic field E. Column two
shows a texture slice of the curvature κ in combination with an isoline representing I. Columns three and four (camera tilted
slightly) show the seeding technique of Handa et al. [HKT01] and our improved method in comparison. Dynamic critical points
found by both methods are dark blue (for minimal points) and dark red (for maximal points), respectively. Points found only by
our algorithm are shown in cyan (arrow). The pictures in columns one and two were created using ParaView [HA04].
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