
WebGL-Enabled Remote Visualization of Smoothed Particle
Hydrodynamics Simulations

Jennifer Chandler1, Harald Obermaier1, and Kenneth I. Joy1

1University of California, Davis

Abstract
Large-scale simulations are often performed on machines without the necessary graphics hardware for visualiza-
tion. Transferring full resolution data to a suitable machine for visualization is impractical and undesirable. We
investigate solutions to the remote visualization problem for large-scale Smoothed Particle Hydrodynamics (SPH)
simulations. Previous remote visualization strategies for SPH perform rendering on the server side and send ren-
dered images to the client viewer. These approaches suffer from delays due to network latency in sending entire
images every frame and adversely affect interactive visual data analysis. WebGL enables hardware acceleration
for rendering in the browser. We combine WebGL volume rendering rendering with data compression and intel-
ligent streaming to provide a fast and flexible remote visualization solution for SPH simulations, which enables
easier access to simulations for analysis and sharing of data.

Categories and Subject Descriptors(according to ACM CCS): I.3.2 [Computer Graphics]: Graphics Systems—
Remote systems

1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a fluid sim-
ulation method that performs computations on a mov-
ing set of particles carrying physical properties of the
fluid [GM77]. SPH simulations are often created on remote
high-performance machines that may not have hardware for
interactive rendering, necessitating remote visualization. A
system that streams data from a server and renders it on the
client is desirable to avoid indiscriminately downloading full
resolution data. Users should be able to view simulations
from many computers without specific client software.

Using WebGL for client-side rendering of SPH simula-
tions meets these requirements. WebGL, based on OpenGL
ES, allows web browsers to directly use the graphics card
without plugins or extensions [Mar11]. WebGL is widely
supported, making it suitable for use in a variety of portable
remote visualization techniques such as in medical visualiza-
tion [BMSP12], [JKD∗12], [ML12b], [MJ12] and geospatial
data visualization [XYL12], [PID12], [Slo11].

Client-side rendering of remote data suffers from de-
lays in data retrieval due to network latency. Lavoué et
al. [LCD13] address this concern for 3D meshes with a pro-
gressive compression scheme to load a low resolution mesh

and fill it in with more detail as data becomes available. We
use an octree as an efficient multi-resolution representation
for SPH data so we can stream in low resolution versions for
rendering while higher resolution versions are loading.

The proposed remote visualization system makes it easier
to share results and is also suitable for in-situ visualization
since data can be viewed remotely while the simulation is
running. Our contributions are as follows:
• A compact streaming system for SPH visualization.
• A WebGL-based multi-resolution SPH volume renderer.
Our work adapts many existing SPH visualization tech-
niques for a remote visualization system using WebGL.

2. Related Work

Visualization of SPH simulations commonly takes the fol-
lowing approaches: volume rendering of physical proper-
ties, rendering isosurfaces of fluid boundaries or physical
variables of interest, and rendering column density, the in-
tegral of the density through the view direction. Goswami et
al. [GSSP10], Linsen et al. [LMD∗11], and Price [Pri07] im-
plement a variety of these techniques for SPH visualization.

Very little work has been done in the area of SPH remote
visualization. Feng et al. [FCDM∗11] implement a web in-
terface to view pre-computed snapshots of SPH data. Cui

c© The Eurographics Association 2015.

Eurographics Conference on Visualization (EuroVis) (2015) Short Papers
E. Bertini, J. Kennedy and E. Puppo (Editors)

DOI: 10.2312/eurovisshort.20151116

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20151116

J. Chandler, H. Obermaier, & K. I. Joy / WebGL-Enabled Remote Visualization of Smoothed Particle Hydrodynamics Simulations

et al. [CMP13] use animated depth images to render a fi-
nite element analysis scene on the client from a variety of
nearby view points and extend their approach to render SPH
particles as spheres. Soumagne et al. [SBC10] do in-situ vi-
sualization of SPH simulations using a ParaView plugin that
reads the streamed data from distributed shared memory.

SPH volume rendering techniques generally take two
forms: splatting particles onto the image plane or into slices,
and converting to a grid representation by evaluating the
SPH kernel in each cell. Fraedrich et al. [FAW10] do the for-
mer, using the geometry shader to splat particles into slices
of a 3D texture. In other work, Fraedrich et al. [FSW09] use
an adaptive octree approach to stream large SPH data from
disk. They combine nearby particles in coarser levels of the
tree. We use an approach similar to Reichl et al. [RTW13]
who create an octree by evaluating the SPH kernel for each
grid cell at the highest resolution and averaging child cells
up the tree. They render the octree using CUDA. For the
WebGL volume rendering, we use a texture representation of
the octree. Benson and Davis [BD02] first developed octree
textures. Lefebvre et al. [LHN05] and Kniss et al. [KLS∗05]
adapt octree textures for texturing 3D models on the GPU.
Boada et al. [BNS01] use an octree to reduce texture mem-
ory for rendering volume data. Campoalegre et al. [CNB13]
create a gradient octree for streaming based on predefined
transfer functions. Our approach is adapted from Gobbetti et
al. [GMG08] who use an octree for ray casting volume data
too large to fit in memory. Movania et al. [ML12a], Noguera
and Jiménez [NJ12], and Congote et al. [CSK∗11] provide
algorithms for ray casting [Lev88] in WebGL using a tiled
2D texture of the 3D uniform grid data.

3. Background

SPH is a particle-based fluid simulation technique. Because
of the dynamic nature of the particle set, it is easy to include
moving obstacles or free boundaries in the flow field. Each
particle carries data such as density and velocity as well as a
smoothing lengthh∈ R representing the particle’s radius of
influence, which can vary per particle. Near incompressible
fluid simulations commonly use a single smoothing length.

To reconstruct values at arbitrary locations in the flow
field, SPH uses a kernel function to weight the contribution
of each particle based on the distance‖r‖ from the sample
location to the particle. Only particles within one smoothing
lengthh are used for reconstruction. We use the same kernel
function used in the simulation [MCG03]:

W(r,h) =
15
πh6

{

(h−‖r‖)3 if 0 ≤ ‖r‖ ≤ h
0 if ‖r‖> h

(1)

The value at a sample location of an arbitrary quantity is the
weighted sum of the quantity’s value per particle.

4. Server-Side Preprocessing

In preprocessing we construct an octree for each time step
using a process similar to that of Reichl et al. [RTW13]. We

use the smoothing length as the cell size of the lowest level
of the octree. According to Reichl et al. this level of resolu-
tion can capture the fine details of the data. We compute the
contribution of the particles to the cell centers using the SPH
kernel weighting function (Equation1) and store the gradi-
ents using the derivative of the kernel function. We compute
the values for cells in higher levels by averaging the values
of their children. Figure1 illustrates this process.

level n

level n-1

va
ri
a
n
ce

 >
=

va
ri
a
n
ce

 <

Figure 1: We insert particles at level n by evaluating the
SPH kernel for the desired scalar. The parent stores the av-
erage of its children. If the variance of the children is less
thanε, we delete them and make the parent a leaf (gray).

During the averaging we also perform data compaction.
If the variance of the children’s values and the magnitude
of their gradients is less than a user-supplied threshold, we
delete the children and make the parent a leaf. It is possible
to rely only on variance; however, we found that in largely
uniform regions with sharp transitions this can cause discon-
tinuities when rendering because neighboring nodes of the
octree may differ by more than one level, causing interpola-
tion problems. Using the gradient magnitude as an additional
threshold preserves continuity by disallowing compaction if
the values change rapidly in neighboring nodes.

We store the octree in breadth first order with one file for
each level. Each node has the scalar value and a flag that is
zero for a leaf or contains the offset of the node’s block of
children in the array for their level. The level 0 file contains
the root node and header information for the octree, includ-
ing the bounding box size and number of levels.

5. Client-Side Viewing

We use WebGL to provide interactive volume rendering for
remote SPH data. WebGL has some limitations: 3D textures
are not supported and integer texture samplers are not avail-
able in shaders. We adapt our algorithms accordingly.

To load a time step, we send an asynchronous XML HTTP
request for level 0 of the octree. Once the first request fin-
ishes, we request the next level and so on until we load the
entire tree. We store an array for each octree level. Since we
already stored the child offsets in preprocessing, we don’t
need to update the parent nodes when we read in a new level.
Changing time steps before all data has loaded cancels pend-
ing requests for level files and starts loading the new time
step. We do loading and processing in a separate thread with
Web Workers [Hic12] to avoid stalling the UI. Communica-
tion with the worker occurs via message passing (Figure2).

After loading each level we compute links to each node’s
neighbors in all 6 directions, 3 links to sibling nodes and 3
to nodes not contained within the parent (Figure3). Linking

c© The Eurographics Association 2015.

2

J. Chandler, H. Obermaier, & K. I. Joy / WebGL-Enabled Remote Visualization of Smoothed Particle Hydrodynamics Simulations

UI

canvas

message

handler

data
processing

texture
generation

Main Thread Worker Thread

javascript
octree

texture TypedArray

data set
selection file requests

sizesshader params

Figure 2: We use Web Workers for loading and processing in
the background to avoid disrupting the UI. Since JavaScript
is single-threaded, without Web Workers, any processing will
freeze the rendering. The threads run independently and
communicate by sending messages through a handler.

only uses the current level of the octree and its parent level.
We assume neighbor links for the parent level were already
computed. A neighbor link is always at the same or a higher
level than the node. To compute a link pointing outside the
parent, we find the parent’s neighbor link in that direction.
If it is a leaf we use it as the neighbor otherwise we use the
appropriate child of the parent’s neighbor.

Figure 3: Neighbor links for the teal node. We can easily
find sibling links. For a link in a different parent, we first
find the parent’s neighbor in that direction (gray arrows).
If it has children we link to the appropriate child (left link),
otherwise we link to the parent’s neighbor (bottom link).

We present two methods for volume rendering: direct oc-
tree rendering and conversion to a uniform grid. Both meth-
ods use 8 bits per pixel textures.

Octree Texture Layout:We write the octree to a 2D texture
with one texture for storing the nodes and a second for stor-
ing leaf data. For larger octrees we use multiple leaf textures.
Using separate textures allows us to linearly interpolate in
the data texture and use nearest neighbor in the node tex-
ture. Like Gobbetti et al. [GMG08] we store a grid in each
leaf instead of a single value to use hardware interpolation
(Figure4). In the node texture, the alpha channel indicates
leaf status. The RGB channels store an address: for internal
nodes the texel containing the first of the node’s children,
and for leaf nodes, the location of the leaf grid. Since our
file representation of the octree contains a single value in
the leaves, we construct a grid by converting parent nodes
of leaves into leaf nodes and using the child values in the
grid. For each grid we also store ghost cells, computed using
neighbor links to avoid backtracking, so that we can interpo-
late samples without additional lookups.

Uniform Grid Texture Layout:An alternative to the previ-
ous method is to write the octree to a uniform grid texture in
a tiled 2D format by doing a depth first traversal and writ-
ing into the texture when we reach a leaf. Each slice has the
same number of cells in the x and y direction as the finest
resolution level of the octree. We can still display the data as

grid data

+

octree leaf

ghost cell layer

2D layout

Figure 4: Each leaf stores a grid composed of the child
values plus a layer of ghost cells with neighbor values. To
evaluate a sample (black point) we interpolate the cells with
white dots. The hardware interpolates in x and y. We sample
the two z slices and manually interpolate the values.

it loads because we make the size of the uniform grid equal
to the size of the currently loaded level of the octree.

Comparison:Rendering the uniform grid is simpler than
rendering the octree texture since it does not have multiple
dependent texture lookups and does not have to compute
neighbor links to form leaf grids. The direct octree rendering
has the advantage of being able to scale well with larger data
sets since it does not need to allocate texture space for the
entire grid, especially if high resolution levels are sparse.

Figure 5: Top: Sphere collision data time steps 80 and 300.
Middle: Sphere drop data set time steps 70 and 120. Bottom:
Mixing simulation time steps 5 and 50.

6. Results

We evaluate our remote viewer with three data sets (Fig-
ure 5). The mixing simulation(161 time steps, 2,097,152
particles, 106,496 KB / time step) models a blender with two
corotating blades located side-by-side in a box. Thesphere
collision (312 time steps, 1,048,576 particles, 53,248 KB
/ time step) models a gravity-free collision of two spher-
ical fluid elements. Thedroplet impact (193 time steps,
2,097,152 particles, 106,496 KB / time step) models the im-
pact of a pair of highly viscous fluid droplets onto a planar
surface. We use the velocity magnitude for rendering.

We tested our application in Chrome and Firefox with an
Nvidia Quadro 6000 graphics card. We use Trickle [Eri05]
to simulate slower connections. Table1 shows data trans-
fer times and file sizes for selected time steps. With these
transfer rates, we can view the data almost immediately up

c© The Eurographics Association 2015.

3

J. Chandler, H. Obermaier, & K. I. Joy / WebGL-Enabled Remote Visualization of Smoothed Particle Hydrodynamics Simulations

time step 5 200 305 5 50 190 5 45 135
level 0 20ms (48B) 25ms (48B) 355ms (48B) 9ms (48B) 8ms (48B) 8ms (48B) 801ms (48B) 21ms (48B) 1.15s (48B)
level 1 6ms (160B) 5ms (160B) 9ms (160B) 6ms (160B) 6ms (160B) 5ms (160B) 6ms (160B) 5ms (160B) 6ms (160B)
level 2 6ms (1.3KB) 6ms (1.3KB) 7ms (1.3KB) 6ms (1.3KB) 5ms (1.3KB) 6ms (1.3KB) 7ms (1.3KB) 6ms (1.3KB) 6ms (1.3KB)
level 3 10ms (10KB) 16ms (10KB) 365ms (10KB) 10ms (10KB) 8ms (8.8KB) 9ms (10KB) 16ms (10KB) 8ms (10KB) 8ms (10KB)
level 4 56ms

(70KB)
31ms
(61.1KB)

38ms
(59.4KB)

30ms
(65KB)

25ms
(57.5KB)

26ms
(63.1KB)

419ms
(80KB)

45ms
(80KB)

474ms
(80KB)

level 5 2.14s
(447KB)

476ms
(327KB)

812ms
(310KB)

598ms
(416KB)

416ms
(339KB)

578ms
(391KB)

1.92s
(541KB)

1.14s
(618KB)

1.2s
(606KB)

level 6 5.27s
(3.0MB)

4.09s
(2.4MB)

3.98s
(1.8MB)

4.72s
(2.8MB)

3.36s
(2.1MB)

4.51s
(2.6MB)

6.51s
(3.5MB)

7.17s
(4.2MB)

7.39s
(4.3MB)

level 7 38.79s
(22.1MB)

27.93s
(16MB)

18.42s
(10.5MB)

34.61s
(19.8MB)

24.23s
(13.8MB)

26.97s
(15.4MB)

35.38s
(20.1MB)

47.53s
(27.1MB)

46.94s
(26.7MB)

level 8 – – 1.8min
(61.9MB)

3min
(102MB)

2.9min
(98.4MB)

2.2min
(77MB)

– – –

Table 1: Data transfer times for selected time steps of the sphere collision, sphere drop, and blender data sets respectively. We
cap the download and upload speeds to approximately 5Mbps to simulate a slower connection.

to level 5, which enables initial interactive viewing and anal-
ysis. Octrees for the data sets have different heights due to
different levels of compactness. Level sizes of a data set also
vary across time steps due to changes in particle distribution.

We measure the average frames per second (fps) across
uniformly spaced time steps at level 7 for each simulation.
Generally the fps for the uniform grid is higher than the di-
rect octree method. For the collision simulation the uniform
grid runs at 52.8fps, and the octree runs at 37.9fps. For the
drop simulation the uniform grid runs at 60fps, and the oc-
tree runs at 46.8fps. For the mixing simulation the uniform
grid runs at 60fps, and the octree runs at 29.5fps.

�

��

��

��

��

���

�
�
�

�
�

	
	

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
	
�

�

	

�
�

�
�
�

�

�

�
�

�
�
�

�
�
�

�
�
�

�
	
�

�

�

�
�
	

�
�

�

�

�
�
�

�
�

	
�
�

�
�
��
�
�
�

���� ����

����������	
�	�

��	�����	�
������
�

���� ! "�#$%&'�()*("+,-.- /(%%�0�()*("+,-.- 1.(+

Figure 6: This chart shows the percentage of nodes remain-
ing in the octree after the compaction step. The more uniform
the data set, the more nodes can be compacted.

The raw SPH data exceeds the size of the largest octree
level. The mixing simulation with its large uniform region
especially benefits from the data compaction. Here, the total
file size of all octree levels combined is only around a quar-
ter of the size of the original SPH data. Figure6 shows the
percentage of nodes remaining after compaction. The level
of compaction roughly corresponds to the uniformity of the
scalar values in the data. In the drop data set the complexity
increases after the impact, decreasing the compaction.

In Figure7, we show images generated after loading dif-
ferent levels of the octree. Even with fewer levels loaded,
the overall shape of the data is still clear. This is helpful for
quickly exploring data because the user doesn’t need to wait
for all levels to load before going to a different time step.

Figure 7: Sphere collision time step 250: The first image has
a maximum level of 5, and the second image has full resolu-
tion (level 7). Even at lower resolution the general shape is
still apparent which gives the user an impression of the time
step quickly before the full resolution data has loaded.

7. Conclusion

We have presented a remote rendering system for SPH sim-
ulations. Our method constructs octrees from the SPH data
on the server-side. On the client-side we use WebGL for
volume rendering. Our implementation allows the user to
view lower resolution representations of the data while the
higher resolution levels load. Our experiments show that the
emerging WebGL technology is a prime candidate for re-
mote visualization of large SPH data sets. However, limita-
tions present in the WebGL standard as well as bandwidth
considerations may require careful adaptation of standard
rendering and data representation techniques. In future work
we plan to consider performance on mobile systems and ad-
ditional methods for data compaction. We would also like to
explore view-dependent methods for data loading.

8. Acknowledgments

This work was supported in part by the National Science
Foundation under contracts IIS 0916289 and IIS 1018097,
and NSF GRFP grant DGE-1148897, and the Office of Ad-
vanced Scientific Computing Research, Office of Science,
of the U.S. Department of Energy under Contract No. DE-
SC0007443 through the Scientific Discovery through Ad-
vanced Computing (SciDAC) programs Scalable Data Man-
agement, Analysis and Visualization Center (SDAV).

c© The Eurographics Association 2015.

4

J. Chandler, H. Obermaier, & K. I. Joy / WebGL-Enabled Remote Visualization of Smoothed Particle Hydrodynamics Simulations

References

[BD02] BENSON D., DAVIS J.: Octree textures. InSIGGRAPH
’02 Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques(2002), pp. 785–790.2

[BMSP12] BIRR S., MÖNCH J., SOMMERFELD D., PREIM

B.: A novel real-time Web3D surgical teaching tool based on
WebGL. In Bildverarbeitung für die Medizin 2012. Springer,
Mar. 2012, pp. 404–409.1

[BNS01] BOADA I., NAVAZO I., SCOPIGNO R.: Multiresolu-
tion volume visualization with a texture-based octree.The Visual
Computer 17, 3 (2001), 185–197.2

[CMP13] CUI J., MA Z., POPESCU V.: Animated depth im-
ages for interactive remote visualization of time-varying datasets.
IEEE Transactions on Visualization and Computer Graphics 20,
11 (Nov. 2013), 1474–1489.2

[CNB13] CAMPOALEGRE L., NAVAZO I., BRUNET P.: Gradi-
ent octrees: A new scheme for remote interactive exploration of
volume models. In2013 International Conference on Computer-
Aided Design and Computer Graphics (CAD/Graphics)(Nov.
2013), pp. 306–313.2

[CSK∗11] CONGOTE J., SEGURA A., KABONGO L., MORENO

A., POSADA J., RUIZ O.: Interactive visualization of volumetric
data with WebGL in real-time. InProceedings of the 16th Inter-
national Conference on 3D Web Technology(2011), pp. 137–146.
2

[Eri05] ERIKSEN M. A.: Trickle: A userland bandwidth shaper
for unix-like systems. InUSENIX Annual Technical Conference,
FREENIX Track(2005), pp. 61–70.3

[FAW10] FRAEDRICH R., AUER S., WESTERMANN R.: Effi-
cient high-quality volume rendering of SPH data.IEEE Transac-
tions on Visualization and Computer Graphics 16, 6 (Nov./Dec.
2010), 1533–1540.2

[FCDM∗11] FENG Y., CROFT R. A., DI MATTEO T., KHANDAI

N., SARGENT R., NOURBAKHSH I., DILLE P., BARTLEY C.,
SPRINGEL V., JANA A., ET AL.: Terapixel imaging of cosmo-
logical simulations.The Astrophysical Journal Supplement Se-
ries 197, 2 (2011), 18:1–18:8.1

[FSW09] FRAEDRICH R., SCHNEIDER J., WESTERMANN R.:
Exploring the millennium run-scalable rendering of large-scale
cosmological datasets.IEEE Transactions on Visualization and
Computer Graphics 15, 6 (Nov./Dec. 2009), 1251–1258.2

[GM77] GINGOLD R. A., MONAGHAN J. J.: Smoothed parti-
cle hydrodynamics: theory and application to non-spherical stars.
Monthly Notices of the Royal Astronomical Society 181, 3 (1977),
375–389.1

[GMG08] GOBBETTI E., MARTON F., GUITIÁN J. A. I.: A
single-pass GPU ray casting framework for interactive out-of-
core rendering of massive volumetric datasets.The Visual Com-
puter 24, 7-9 (July 2008), 797–806.2, 3

[GSSP10] GOSWAMI P., SCHLEGEL P., SOLENTHALER B.,
PAJAROLA R.: Interactive SPH simulation and render-
ing on the GPU. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(2010), Eurographics Association, pp. 55–64.1

[Hic12] HICKSON I.: Web Workers. W3C Candidate Recommen-
dation, May 2012.http://www.w3.org/TR/workers/.
2

[JKD∗12] JACINTO H., KÉCHICHIAN R., DESVIGNES M.,
PROST R., VALETTE S.: A web interface for 3d visualization
and interactive segmentation of medical images. InProceed-
ings of the 17th International Conference on 3D Web Technology
(2012), pp. 51–58.1

[KLS∗05] KNISS J., LEFOHN A., STRZODKA R., SENGUPTA

S., OWENS J. D.: Octree textures on graphics hardware. In
ACM SIGGRAPH 2005 Sketches(2005), p. 16.2

[LCD13] LAVOUÉ G., CHEVALIER L., DUPONT F.: Streaming
compressed 3d data on the web using JavaScript and WebGL.
In Proceedings of the 18th International Conference on 3D Web
Technology(2013), pp. 19–27.1

[Lev88] LEVOY M.: Display of surfaces from volume data.Com-
puter Graphics and Applications, IEEE 8, 3 (May 1988), 29–37.
2

[LHN05] L EFEBVRE S., HORNUS S., NEYRET F.: Chapter 37:
Octree textures on the GPU. InGPU Gems 2, Pharr M., (Ed.).
Addison-Wesley Professional, Mar. 2005.2

[LMD ∗11] LINSEN L., MOLCHANOV V., DOBREV P., ROSS-
WOG S., ROSENTHAL P., LONG T. V.: SmoothViz: Visualiza-
tion of smoothed particles hydrodynamics data. InHydrodynam-
ics - Optimizing Methods and Tools(Oct. 2011), Schulz H. E.,
Simoñes A. L. A., Lobosco R. J., (Eds.), pp. 3–26.1

[Mar11] MARRIN C.: WebGL specification.Khronos WebGL
Working Group(2011).1

[MCG03] MÜLLER M., CHARYPAR D., GROSS M.: Particle-
based fluid simulation for interactive applications. InProceed-
ings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation(2003), Eurographics Association, pp. 154–
159. 2

[MJ12] MARION C., JOMIER J.: Real-time collaborative scien-
tific WebGL visualization with WebSocket. InProceedings of
the 17th International Conference on 3D Web Technology(2012),
ACM, pp. 47–50.1

[ML12a] MOVANIA M. M., L IN F.: High-performance volume
rendering on the ubiquitous WebGL platform. InIEEE 14th
International Conference on High Performance Computing and
Communication & IEEE 9th International Conference on Em-
bedded Software and Systems(June 2012), pp. 381–388.2

[ML12b] M OVANIA M. M., L IN F.: Mobile visualization of
biomedical volume datasets.Journal of Internet Technology and
Secured Transactions (JITST) 1, 2 (Mar./June 2012), 52–60.1

[NJ12] NOGUERA J., JIMÉNEZ J.: Visualization of very large
3d volumes on mobile devices and WebGL. In20th WSCG in-
ternational conference on computer graphics, visualization and
computer vision(2012), pp. 105–112.2

[PID12] PRIETO I., IZKARA J. L., DELGADO F.: From point
cloud to Web 3D through CityGML. In2012 18th International
Conference on Virtual Systems and Multimedia (VSMM)(Sept.
2012), pp. 405–412.1

[Pri07] PRICE D. J.: SPLASH: An interactive visualization tool
for smoothed particle hydrodynamics simulations.Publications
of the Astronomical Society of Australia 24, 3 (2007), 159–173.
1

[RTW13] REICHL F., TREIB M., WESTERMANN R.: Visualiza-
tion of big SPH simulations via compressed octree grids. InIEEE
International Conference on Big Data(2013), pp. 71–78.2

[SBC10] SOUMAGNE J., BIDDISCOMBE J., CLARKE J.: In-situ
visualization and analysis of SPH data using a ParaView plugin
and a distributed shared memory interface. In5th International
SPHERIC Workshop(2010), pp. 186–193.2

[Slo11] SLOUP P.: WebGL Earth. Bachelor’s thesis, Faculty of
Informatics, Masaryk University, 2011.1

[XYL12] X UE L., YANGMING Q., LEI L.: Visualization of ge-
omagnetic environment based on WebGL. In2012 Fifth Inter-
national Symposium on Computational Intelligence and Design
(Oct. 2012), vol. 2, IEEE, pp. 274–277.1

c© The Eurographics Association 2015.

5

http://www.w3.org/TR/workers/

