Eurographics Conference on Visualization (EuroVis) (2014)

N. Elmqvist, M. Hlawitschka, and J. Kennedy (Editors)

Per-Fragment Image-based Flow Visualization using
Interactive Surface Extraction from Unstructured Grids

E. Niebling! and M. Becker? and T. Schlegel

I Technische Universitit Dresden, Germany
2 Stellba Hydro GmbH, Germany

Abstract

We present a method for image-based visualization of flow fields on unstructured grids. For interactive exploration
of flow data from CFD simulations, we combine GPU-accelerated surface extraction methods and line integral
convolution (LIC) in a multi-pass algorithm. In contrast to other highly efficient methods, computation of stream
lines is performed directly on the unstructured grid, where in previous methods the flow field had to be confined
to the extracted surface. The introduced algorithm is based on three passes: Surface extraction, rendering, and
computation of stream lines to perform line integral convolution. Point location, a major performance factor
in stream line computation on unstructured grids, can be greatly accelerated by reusing data from the surface
extraction pass. This allows us to achieve interactive frame rates on current generation graphics hardware for the

Short Papers

post-processing of unstructured CFD datasets.

Categories and Subject Descriptors (according to ACM CCS):

Generation—Viewing algorithms

1.3.3 [Computer Graphics]: Picture/Image

1. Introduction

Direct visualization of a complete, large scale simulation
dataset is often impractical due to the occlusion of inter-
esting flow features by other data. Providing tools for in-
teractive reduction of datasets to extract meaningful data via
filtering helps users to analyze large-scale flow fields. In-
teractive isosurface and cut-surface extraction is an effec-
tive way to visualize various characteristics of fluid dynamic
simulation results. Scalar fields such as pressure, or scalar
data derived from fields of higher dimensionality, e.g. the
magnitude of a velocity field, can be efficiently displayed on
these surfaces via color coding. To enable dynamic probing
of data fields, low latency surface extraction and mapping
mechanism have to be developed that provide immediate vi-
sual feedback to the user’s control motions.

Simulations performed on hybrid unstructured grids
(USGs), i.e. USGs that contain more than a single cell ele-
ment type, are widely used in various engineering domains.
Contrary to structured grids, each vertex position has to be
stored separately in unstructured grids. The topology, i.e.
the connectivity between these vertices must be explicitly
defined. In contrast to simulation data on structured grids,
proximity of data in world coordinates generally does not

(© The Eurographics Association 2014.

DOI: 10.2312/eurovisshort.20141160

have to correlate with proximity in memory in any dimen-
sion, which makes optimization of memory accesses diffi-
cult for the general case. Since there is no implicit structure
inherent in the topology, neighbor relationship between cells
has to be explicitly stored. USGs typically consist of an ar-
ray of elements, an array specifying connectivity, and an ar-
ray of vertex positions. Using the information stored in the
connectivity array, cells are built from points as 2D or 3D
elements such as lines, triangles, tetrahedra or hexahedra.
Indirect addressing can be used to allow for the sharing of
vertices between neighboring cells.

The presented algorithm provides integrated iso- and cut-
surface extraction from USGs and computation of line inte-
gral convolution on these surfaces using multiple rendering
and computation phases.

2. Related Work
2.1. LIC

In the visualization of CFD simulation data, lines and an-
imated particles are used to provide insight into the local
flow field. Hedgehog plots have been used as the standard
method to visualize the global flow directions in dense flow

delivered by

www.eg.org

-G EUROGRAPHICS
: DIGITAL LIBRARY



http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eurovisshort.20141160

74 F. Niebling et al. / Per-Fragment Image-based Flow Visualization using Interactive Surface Extraction

Unstructured grid user interaction
Flow field
l* Surface Extraction

\generates Surface triangles f
Indices of grid cells per triangle

Surface Rendering

World coordinates of fragment
l Index of grid cell per fragment
Y

Particle Advection

generates f
l Image of Line Integral Convolution ¢ ‘

Image Overlay & Lighting

Figure 1: Overview of the proposed algorithm consisting of
multiple computation and rendering passes.

fields, although it is hard for the user to reconstruct the flow
from discrete samples. To provide a global visualization of
dense flow fields, texture-based methods such as Digital Dif-
ferential Analyzer (DDA) [CL93], Spot Noise [VW91] and
LIC [CL93] have been developed. The basic idea of these
flow visualization techniques is to blur textures containing
noise along the local vectors in a flow fields. As opposed to
DDA convolution where complete streamlines are approxi-
mated, LIC computes locally exact streamline advection.

Given streamlines ¢ parametrized by arclength s that are
defined by

%c(s) — v(o(s),1) 0

and the initial condition
6(0) =0y @)

the LIC algorithm computes intensities for each texel located
at xo = 6(sp) by evaluating the convolution integral

so+L

I(x0) = / k(s —s0)T(o(s))ds 3)
SU—L

where o is the streamline through the center of the texel, k

is a given filter kernel with length L, and T is a texture filled

with white noise [SH95].

2.2. IBFVS

Image Based Flow Visualization (/BFV) [vWO02] and Im-
age Based Flow Visualization for Curved Surfaces (IBFVS)
[vWO03] are alternatives to traditional L/C-based approaches
for unsteady flow. Each image is the result of warping the
previous image along the flow direction, blended with back-
ground images containing white noise. Van Wijk uses CPU-
based projection of the velocity vectors at mesh vertices to
the image space. The texture is then advected over the mesh
according to the velocity vectors stored at the projected mesh
vertices. The distorted texture coordinates computed by the
mesh advection are then mapped to the original 3D surface
mesh vertices.

The main difference between the IBFVS algorithm and
our proposed approach is the projection of the vector field to
image space that is performed during IBFVS that is an inher-
itance of the original Lagrangian-Eulerian Advection (LEA)
algorithm [JEHO2]. This makes particle advection easier, but
leads to incorrect results when the flow is not confined to the
extracted surface.

2.3. ISA

Image Space Advection (ISA) [LJHO3] distorts a regular,
rectilinear mesh defined in 2D image space. The vectors in
a flow field at the vertices are encoded in the RGB channels
of a texture and rendered using Gouraud shading to inter-
polate the vectors resulting in a velocity image. The veloc-
ity vectors projected onto the image plane are then used for
image-space advection of the local flow field.

The difference between ISA and the proposed algorithm
is that in ISA the flow field is rendered to an interpolated
velocity image. The velocity image is then interpreted as the
vector field and is used for the texture advection in image
space [LWJHO4]. The proposed algorithm is able to compute
particle advection using the original unstructured grid from
the CFD simulation.

3. Algorithm

We present a multi-pass algorithm that combines interactive
surface extraction and per-fragment computation of line in-
tegrals for flow visualization (see also figure 1). By render-
ing data from the extracted surface into an off-screen floating
point buffer, the generated fragments can be used as start-
ing points for the computation of line integrals. This allows
us to re-use data from the surface extraction pass, to avoid
expensive operations such as point location in USG cells
for particle advection. The LIC pass then uses the generated
streamline starting positions to compute line integrals in the
original unstructured grid.

3.1. Surface Extraction from Hybrid Unstructured
Grids on GPUs

Our method for efficient manycore extraction of surfaces
from USGs is based on NVIDIA’s surface extraction algo-
rithm for Cartesian grids on GPUs [NVIOS8]. The algorithm
treats unstructured grids as a stream of individual cells that
can be processed independently in parallel. Given an input
stream of cells, output streams of triangles, normals and
mapped data elements are provided for immediate rendering
or further post-processing on the parallel GPU.

The algorithm is split into multiple steps:

o Classification: All cells in the USG are classified accord-
ing to how many vertices are generated by isosurface or
cut-surface extraction in the individual cell. Two output

(© The Eurographics Association 2014.



F. Niebling et al. / Per-Fragment Image-based Flow Visualization using Interactive Surface Extraction 75

streams are generated as input for the following stages.
The first data stream is a stream containing the number of
vertices generated in the cell. The second stream is a clas-
sification of boolean values (0/1) specifying if any vertices
in the cell are generated at all. The number of generated
vertices can be determined by calculating an index into a
triangle lookup table such as the ones used in extensions
of the marching cubes algorithm for hybrid unstructured
grids [NSNGH12].

e Index computation for stream compaction: Since it is
likely that there are cells in the USG that are not cut by
the surface, the output streams have to be compacted. To
be able to leave out empty cells, exclusive prefix sums
for the aforementioned output streams are computed to be
used in the next stage.

e Stream compaction: Using the stream containing the num-
ber of generated vertices per-cell, along with the stream
containing the exclusive prefix sum of the boolean classi-
fication, starting indices for vertices in a compacted out-
put stream can be computed forming an element index
stream. We use CUDPP [HSOO07] for computation of the
exclusive parallel prefix sum of the classification stream.

o Triangle and normal generation: With the element in-
dex stream designating the position of triangle vertices
in the surface output stream, and the stream containing
the exclusive prefix sum of generated vertices, the gener-
ated triangles can be independently scattered to the out-
put stream. This can be achieved by using triangle lookup
tables as in the marching cubes algorithm. During gen-
eration of the triangle output stream, further compacted
streams containing per-face normals, interpolated data on
vertices and the cell index in the USG per generated trian-
gle are generated.

The actual extraction of the surface is independent per-
cell, allowing for a scalable pleasantly parallel execution on
parallel GPGPU clusters. Stream compaction to allow for
a compact representation of the resulting triangle mesh is
based on building parallel prefix sums, which introduces an
additional computational complexity of O(logy(n)), where
n designates the number of cells in the USG.

3.2. Rendering Pass

We use the rendering pipeline to extract fragments from the
extracted surface where particle advection should be per-
formed given a specific viewpoint, thereby gaining view-
frustum culling, backface culling and omission of sub-pixel
triangles. In the first render pass, the USG cell indices are
provided as vertex attributes to a GLSL shader program
along with the triangle vertices of the extracted surface. The
triangles are then rendered to a floating point RGBA buffer
allowing for the storage of 32 bit of data per channel. In
the vertex shader, the world coordinates of the triangle ver-
tices along with the USG element index are passed on to the
fragment shader. The fragment shader stores the interpolated

(© The Eurographics Association 2014.

world coordinates of the fragment in the RGB channel of the
render target. The alpha channel is used to store the element
index. The resulting texture in the render target consists of
the world coordinates for the center of each fragment and the
index of the cell in the original USG grid.

Since lighting is omitted in this pass for lack of space in
the RGBA buffer, a lightmap to provide depth cues to the
user needs to be generated in an additional rendering pass.
This is especially helpful for the visualization of flow on iso-
surfaces (see Figure 2).

3.3. Stream Line Computation and Line Integral
Convolution

Following the first render pass is an implementation of LIC
as a post-processing of the generated floating point RGBA
image using CUDA kernels. For every fragment in the tex-
ture containing an alpha value that is a valid cell in the USG,
computation of the convolution integral through the center
of this fragment is performed (see Formula 3). The start-
ing point of the streamline computation is known to be in
the USG cell referenced in the alpha buffer. Therefore, ad-
ditional computationally expensive point location operations
can be avoided.

The method for decomposition of complex USG elements
into tetrahedra described by Kenwright et al. [KL96] is used
to do on-the fly decomposition of complex cells during par-
ticle advection. The advantage of using runtime decomposi-
tion compared to offline decomposition is that the memory
requirements for an USG containing complex cells is much
lower than for a tetrahedral mesh. Particles leaving individ-
ual cells during advection can be detected as part of the tetra-
hedral decomposition method. Neighbor search [HNFO07]
can then be applied to locate the new cell that the particle
traveled to.

The output of the post-processing kernels is an image
where the fragments containing the rendered surface have
been replaced by the intensity values resulting from the com-
putation of the convolution integral, augmented with colors
designating scalar properties of the flow, e.g. the magnitude
of the local flow field.

4. Results
4.1. Surface Extraction

Surface extraction on GPUs is able to achieve much higher
performance than sophisticated CPU implementations even
for hybrid unstructured grids. Although highly-irregular
memory accesses that are needed in the processing of USGs
still are a bottleneck for parallel manycore algorithms, the
memory intensive classification of cells, where every cell
and every vertex in each cell have to be accessed, is much
faster on newer generation GPUs. For large computational
grids, distribution of the USG to a GPU cluster using do-
main decomposition is a feasible approach.



76 F. Niebling et al. / Per-Fragment Image-based Flow Visualization using Interactive Surface Extraction

Figure 2: Airflow in a datacenter on an isosurface of tem-
perature (velocity color coded)

4.2. Integrated Surface Extraction and LIC

The performance of the presented algorithm mainly depends
on the number of fragments used for post-processing of the
image. Sort-first parallelization by partitioning the image
space, allowing multiple GPUs to process parts of the dataset
in parallel, thus leads to big improvements in the perfor-
mance of the algorithm.

Although no reuse of calculated streamlines is performed,
the combined surface extraction and particle advection ben-
efits from current GPGPU architectures. Especially at close
viewing distances, partitioning of the image space into 2D
blocks for processing using CUDA kernels increases the
probability that fragments processed inside the same block
are part of the same USG cell. The individual threads par-
ticipating in the computation of streamlines in a single block
are then able to exploit cached access to USG data structures
on the GPU, considerably increasing performance.

Transient flow data is supported for static USGs, where
the upload of time-dependent flow fields from host to device
memory can be performed during classification in the sur-
face extraction step. Unfortunately, this technique is infeasi-
ble for time-dependent grids since there is not enough band-
width available between host and device on current hard-
ware.

Visual differences between LIC performed on the 2D sur-
face grid and on the 3D computational grid are minimal
where the flow field is closely confined to the extracted sur-
face. When the flow field is closer to being perpendicular to
the extracted surface, the impression of surface flow is weak-
ened (see Figure 3).

5. Conclusion

We have presented an algorithm for integrated surface ex-
traction and computation of line integral convolution for
visualization of flow fields on unstructured grids. Using a
GPU-based multi-pass algorithm we can achieve interactive
exploration of flow simulation data.

Our algorithm is able to calculate convolution integrals on
surfaces extracted from USGs using parallel manycore de-
vices such as programmable GPUs. It avoids several short-
comings of previous developments:

(©)

Figure 3: (a) LIC on flow field projected to surface, (b) LIC
on 3D CFD flow field, (c) normalized difference image

e The unstructured grid does not need to be resampled to a
structured grid at any time of the algorithm. This avoids
artifacts introduced by interpolation. Complex tree struc-
tures for cell location (e.g. Cell-Tree [GJ10]) - which are
still unable to perform cell location for millions of parti-
cles in realtime - can be omitted, since starting cells for
particle tracing are already computed during the surface
extraction step.

e The flow field does not have to be projected to the surface
where LIC is applied. Instead, particle advection is per-
formed on the original CFD grid. Projection of the vector
field is only appropriate for surfaces that are close approx-
imations of the local flow field, i.e. stream surfaces. Oth-
erwise, aliasing artifacts might be added to the visualiza-
tion, possibly leading to erroneous conclusions about the
underlying flow.

e Streamline computation is performed per-fragment of the
generated image, providing a decoupling of image reso-
lution and object space. Therefore, both coarse visualiza-
tions stemming from large triangles, and duplicate com-
putations for small objects are eliminated.

e Readback of rendered images from the GPU to CPU-
accessible memory is not required, unless parallel or re-
mote rendering is performed and copying of image data
to remote hosts is essential.

6. Acknowledgments

This work was supported in part by a grant from German
Federal Ministry of Education and Research (BMBF).

(© The Eurographics Association 2014.



F. Niebling et al. / Per-Fragment Image-based Flow Visualization using Interactive Surface Extraction 77

References

[CL93] CABRAL B., LEEDOM L. C.: Imaging Vector Fields
Using Line Integral Convolution. In Proceedings of the 20th
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1993), SIGGRAPH ’93, ACM,
pp. 263-270. doi:10.1145/166117.166151. 2

[GJ10] GARTH C., Joy K. I.: Fast, memory-efficient cell loca-
tion in unstructured grids for visualization. IEEE Transactions
on Visualization and Computer Graphics 16, 6 (2010), 1541—
1550. doi:http://doi.ieeecomputersociety.
org/10.1109/TVCG.2010.156. 4

[HNFO7] HASELBACHER A., NAJIJAR F. M., FERRY J. P.:
An efficient and robust particle-localization algorithm for un-
structured grids. Journal of Computational Physics 225 (Au-
gust 2007), 2198-2213. URL: http://portal.acm.
org/citation.cfm?id=1280287.1280451, doi:10.
1016/5.9cp.2007.03.018. 3

[HSOO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel
prefix sum (scan) with cuda. In GPU Gems 3, Nguyen H., (Ed.).
Addison Wesley, Aug. 2007. 3

[JEHO2] JOBARD B., ERLEBACHER G., HUSSAINI M.:
Lagrangian-Eulerian advection of noise and dye textures
for unsteady flow visualization. Visualization and Com-
puter Graphics, IEEE Transactions on 8, 3 (2002), 211-222.
doi:10.1109/TVCG.2002.1021575.2

[KL96] KENWRIGHT D., LANE D.: Interactive time-dependent
particle tracing using tetrahedral decomposition. IEEE Transac-
tions on Visualization and Computer Graphics 2, 2 (jun 1996),
120-129. doi1:10.1109/2945.506224. 3

[LJHO3] LARAMEE R., JOBARD B., HAUSER H.: Image space
based visualization of unsteady flow on surfaces. In Visualiza-
tion, 2003. VIS 2003. IEEE (oct. 2003), pp. 131 —138. doi:
10.1109/VISUAL.2003.1250364.2

[LWJHO4] LARAMEER.S.,WHK]J.J.V.,JOBARD B., HAUSER
H.: ISA and IBFVS: Image space based visualization of flow
on surfaces. IEEE Transactions on Visualization and Computer
Graphics 10 (2004), 637-648. 2

[NSNGH12] NARAYAN A., SREEVALSAN-NAIR J., GAITHER
K., HAMANN B.: Isosurface extraction from hybrid unstructured
grids containing pentahedral elements. In GRAPP/IVAPP (2012),
Richard P., Kraus M., Laramee R. S., Braz J., (Eds.), SciTePress,
pp. 660-669. URL: http://dblp.uni-trier.de/db/
conf/grapp/grapp2012.html#NarayanSGH12. 3

[NVIO8] NVIDIA: CUDA C/C++ SDK Code Samples,
2008. URL: http://developer.nvidia.com/
cuda-cc-sdk-code-samples. 2

[SH95] STALLING D., HEGE H.-C.: Fast and resolution inde-
pendent line integral convolution. In Proceedings of the 22nd
annual conference on Computer graphics and interactive tech-
niques (New York, NY, USA, 1995), SIGGRAPH ’95, ACM,
pp. 249-256. doi:10.1145/218380.218448. 2

[vWI1] VAN WUDK J. J.: Spot noise texture synthesis for data
visualization. In Proceedings of the 18th annual conference on
Computer graphics and interactive techniques (New York, NY,
USA, 1991), SIGGRAPH ’91, ACM, pp. 309-318. doi:10.
1145/122718.122751. 2

[vWO02] VAN WK J. J.: Image based flow visualization. In Pro-
ceedings of the 29th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 2002), SIG-
GRAPH 02, ACM, pp. 745-754. doi:10.1145/566570.
566646. 2

[VWO03] VAN WK J.: Image based flow visualization for curved

(© The Eurographics Association 2014.

surfaces. In Visualization, 2003. VIS 2003. IEEE (oct. 2003),
pp. 123 -130. doi:10.1109/VISUAL.2003.1250363. 2


http://dx.doi.org/10.1145/166117.166151
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.156
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.156
http://portal.acm.org/citation.cfm?id=1280287.1280451
http://portal.acm.org/citation.cfm?id=1280287.1280451
http://dx.doi.org/10.1016/j.jcp.2007.03.018
http://dx.doi.org/10.1016/j.jcp.2007.03.018
http://dx.doi.org/10.1109/TVCG.2002.1021575
http://dx.doi.org/10.1109/2945.506224
http://dx.doi.org/10.1109/VISUAL.2003.1250364
http://dx.doi.org/10.1109/VISUAL.2003.1250364
http://dblp.uni-trier.de/db/conf/grapp/grapp2012.html#NarayanSGH12
http://dblp.uni-trier.de/db/conf/grapp/grapp2012.html#NarayanSGH12
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://developer.nvidia.com/cuda-cc-sdk-code-samples
http://dx.doi.org/10.1145/218380.218448
http://dx.doi.org/10.1145/122718.122751
http://dx.doi.org/10.1145/122718.122751
http://dx.doi.org/10.1145/566570.566646
http://dx.doi.org/10.1145/566570.566646
http://dx.doi.org/10.1109/VISUAL.2003.1250363

