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Abstract
Relational datasets, which include clustering information, can be visualized with tools such as BubbleSets, Line-
Sets, SOM, and GMap. The countries in SOM-based and GMap-based visualizations are fragmented, i.e., they
are represented by several disconnected regions. While BubbleSets and LineSets have contiguous regions, these
regions may overlap, even when the input clustering is non-overlapping. We describe two methods for creating
non-fragmented and non-overlapping maps within the GMap framework. The first approach achieves contiguity
by preserving the given embedding and creating a clustering based on geometric proximity. The second approach
achieves contiguity by preserving the clustering information. The methods are quantitatively evaluated using em-
bedding and clustering metrics, and their usefulness is demonstrated with several real-world datasets and a fully-
functional online system at gmap.cs.arizona.edu.

1. Introduction

The geographic map metaphor has been utilized as visual in-
terface for relational data, where objects, relations between
objects, and clustering are captured by cities, roads between
cities, and countries. Information spatialization is the pro-
cess of assigning 2D coordinates to abstract data points, ide-
ally such that the spatial mapping has much of the char-
acteristics of the original high-dimensional space. Multidi-
mensional scaling (MDS) and principal component analy-
sis (PCA) are techniques that allow us to spatialize high-
dimensional data, resulting in point clouds, node-link dia-
grams, and maps. In data mining and data analysis, clus-
tering is a very important step and maps are very helpful
in dealing with clustered data. First, by explicitly defin-
ing the boundary of the clusters and coloring the regions,
we make the clustering information clear. Second, as most
dimensionality-reduction techniques lead to 2D positioning
of the data points, a map is a natural generalization. Finally,
while it often takes considerable effort to understand graphs,
charts, and tables, a map representation is more intuitive.

While many map-based visualizations have been con-
sidered, some of them produce fragmented maps (SOM,
GMap), while others have overlapping regions, even when
the underlying clusters have no overlaps (BubbleSets, Line-
Sets). We describe methods for creating maps with contigu-
ous and non-overlapping regions, since experimental evi-
dence suggests that this results in better task performance
and fewer misinterpretations. The algorithms can be utilized

in different scenarios depending on the type of input data.
The first algorithm relies on the initial embedding of the in-
put graph and can be applied when nodes have preassigned
coordinates. The second algorithm is applicable in scenar-
ios in which the input graph has been clustered in advance.
We designed and implemented both approaches and they are
available as fully functional online tools.

2. Related Work

Using maps to visualize non-cartographic data has been con-
sidered in the context of spatialization [SF03,FMM06]. Self
organizing maps (SOM), coupled with geographic informa-
tion systems, render maps of textual documents [Sku02].
Similarly, maps of general science show related groups of
scientific disciplines [BKB05]. More recently, maps of com-
puter science (MOCS) [FK14] provide visual exploration of
topics in conferences and temporal topic evolution.

Different visualization techniques identify groups by con-
necting or enclosing related elements: BubbleSets [CPC09],
LineSets [ARRC11], and Euler diagrams [RZF08, SAA09].
When providing an underlying overlap-free clustering, the
first two techniques would generate contiguous but poten-
tially overlapping regions. Instead, Euler diagram genera-
tion methods produce contiguous and non-overlapping re-
gions but ignore the connectivity and the initial embedding
of the graph.

The geographic map metaphor was also used for visual-
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(a) GMap
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(b) EBA
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(c) CBA

Figure 1: International trade relationships visualized with (a) the GMap algorithm, our new (b) embedding-based algorithm
(EBA) and (c) clustering-based algorithm (CBA). EBA preserves the given graph embedding, while CBA preserves the given
clustering of nodes. The countries computed by EBA and CBA always form contiguous regions.

izing recommendations, where the Graph-to-Map approach
(GMap) was introduced [GHKV09]. GMap combines graph
layout and graph clustering, together with appropriate color-
ing of the clusters and creating boundaries based on clus-
ters and connectivity in the original graph. A follow-up
paper describes how this approach can be generalized to
any relational data set [HGK10], such as books on Ama-
zon, TV-shows and movies, and research collaborations.
GMap has also been used to produce maps of computer sci-
ence based on conference publications or individual publi-
cations [FK14]. In summary, GMap generates drawing of
clustered graphs so that the groups are depicted as countries
in a geographical map. GMap visualizations are based on a
modified Voronoi diagram of the nodes, which in turn is de-
termined by the embedding and clustering. However, since
graph layout and graph clustering are two separate steps, the
result is often fragmented; see Fig. 1.

A recent study compared several techniques for display-
ing clusters with node-link diagrams [JRHT14]. They found
GMap improved performance of searching and exploration
tasks, compared to standard node-link diagrams, Bubble-
Sets, and LineSets. On the other hand, GMap worsened per-
formance of group-based tasks, as there is no explicit con-
nection between disjoint regions of the same cluster, and
users were unsure whether they belong to the same group or
not. Such fragmentation makes it difficult to identify the cor-
rect regions and can result in misinterpretation of the map.
Our own informal experiments indicate that users prefer con-
tiguous maps, and that the removal of country fragmentation
is considered more important than preserving other graph
characteristics such as embedding or clustering.

3. Algorithms for Creating Contiguous Maps

We assume that the data is already processed and the in-
put is a graph G = (V,E) with edge weights w(e) ∈ R

for all e ∈ E. If the graph is unweighted then we assume
w(e) = 1. The output of our algorithms is a graph layout,
i.e., positions pv ∈ R2 for all nodes v ∈ V , and a clustering
C = {C1, . . . ,Ck} of the nodes so that nodes of the same clus-
ter form a contiguous region. Let ||pu− pv|| be a Euclidean
distance between nodes u and v, and cv ∈ C be a cluster to
which node v ∈ V is assigned. For an edge (u,v), we define
the ideal edge length as d(u,v) =− log[0.9 ·w(u,v)+0.1].

We first describe an embedding-based algorithm (EBA),
which preserves a given graph layout. There are applica-
tions in which the input specifies positions of the nodes (e.g.,
MDS, PCA). EBA is well suited for such settings. We then
describe a cluster-based algorithm (CBA), which preserves a
given graph clustering. CBA is suited for settings where the
input specifies the clustering of the nodes (e.g., party affili-
ation in political networks, countries grouped by continent).
Note that when neither clustering nor embedding is given,
we can apply both algorithms to create a map. We pair EBA
with any embedding algorithm, or CBA with any clustering
algorithm. Both produce contiguous maps; see Fig. 1.

Embedding-Based Algorithm. We assume the input
graph is drawn with fixed node positions. The graph is pro-
cessed in the following two steps.

1. Cluster graph nodes using K-means [Llo82]. Here the
edges of the graph are ignored; the distance between nodes u
and v is the distance between the corresponding points ||pu−
pv||. This results in a partition of graph nodes into k clusters
so that every node belongs to the cluster with the nearest
mean. Since we use Euclidean distances, the clusters form
convex (thus, contiguous) regions.

2. Iteratively refine the clustering. For every node v, find
its nearest neighbor u in a different cluster, i.e., Cv 6=Cu. If v
has more edges with nodes of Cu, rather than with the nodes
of cv, i.e., ∑t∈Cu

w(v, t)> ∑t∈Cv
w(v, t), then reassign v to the

cluster Cu and proceed with the next node. The operation is
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Figure 2: CBA: initial map; Step 1: squares are placed at country-barycenters; Step 2: overlaps are removed; Step 3: subgraphs
induced by countries are scaled to fit inside its square; Step 4: a spring embedder pulls nodes towards original positions; flexible
uncrossable boundaries ensure contiguity and smooth shapes.

applied only if the new clusters are still contiguous, which
can be tested as described in [GHKV09]. The process is re-
peated until no node can be moved to a new cluster. Note that
the process converges, as the sum ∑u,v∈C w(u,v) increases in
each step, but we do not have a good bound on the number
of iterations required.

Any geometric clustering algorithm can be used in the first
step; we choose K-means as it is efficient, simple to imple-
ment, steadily produces non-fragmented clusters, and con-
verges quickly for all graphs in our datasets (with the itera-
tive refinement). A disadvantage is that the number of clus-
ters should be specified; but when the number is unknown,
we compute a suitable value using standard methods [SJ03].

Clustering-Based Algorithm. We assume the input
graph is given with fixed node clustering and some initial
layout. The algorithm attempts to maintain the layout, as it
helps to preserve the mental map. This is important for ap-
plications in which the given embedding is meaningful. The
graph is processed in the following four steps; see Fig. 2.

1. Compute country-barycenters in the initial layout. The
country-barycenter is the average coordinate of the nodes in
that cluster. It is used to keep the position of the country as
close as possible to its position in the input layout.

2. Reserve a square for each country. Assign square-nodes
of equal size to each country, and then remove overlaps
between the squares using a node overlap removal algo-
rithm [DMS07]. This step ensures that each country has a
non-overlapping square-region reserved for its nodes.

3. Bound country regions and reposition nodes inside. En-
close each country region by four boundary nodes and edges.
Take the layout of the subgraph induced by the nodes of a
country and scale it to fit inside its square.

4. Pull nodes towards their original positions with flexi-
ble boundaries. This is accomplished by a modified spring
embedder with added attractive force pulling nodes towards
their position in the original embedding, in addition to the
standard attractive and repulsive forces.

For the last step we modify the ImPrEd algorithm, which

prevents nodes from crossing edges [SAAB11], with an ad-
ditional force that attracts nodes to their original positions.
The algorithm keeps nodes inside country boundaries, by
making the boundary edges flexible so they can expand or
contract in order to fit the shape of the growing countries.
CBA aims to preserve the original position of the cluster and
the relative position of the nodes inside groups; see Fig. 1c.

4. Quantitative Analysis

We evaluate our new methods using real-world datasets and
quantitative metrics for graph layout and clustering. The
metrics are defined so that the measurement is a real pos-
itive number in the range [0,1] with 1 indicating the best
value. We use 10 datasets, creating a total of 70 maps. Half
of them (Amazon book titles, last.fm music bands, co-
authorship graph, university similarity, and trade data) are
from [HGK10]. The others are extracted from DBLP titles
for conferences, journals, and authors using MOCS. The
maps contain |V | ∈ {50,100, . . . ,500} nodes in the under-
lying graph. First, we describe metrics for graph clustering.

Modularity. In a good clustering, the number of edges
within clusters should be high and the number of edges be-
tween clusters should be low, as measured by modularity:

1
2m ∑

u,v

(
wuv−

degudegv

2m

)
δ(cu,cv),

where the sum is over all pairs of nodes, degv = ∑t w(v, t)
is the weighted degree of node v, m = 1

2 ∑uv w(u,v), and
δ(ci,c j) is 1 if ci = c j and 0 otherwise [BGW03].

Conductance. The conductance compares the weight of a
cut and the weight of the edges in either of the two subgraphs
induced by the cut [BGW03, Sch07]. The conductance of a
graph is the average conductance over all cuts.

Coverage. The coverage is given as the fraction of
the weight of all intra-cluster edges with respect to the
total weight of all edges in the whole graph [Sch07]:
∑uv w(u,v)δ(cu,cv)/∑uv w(u,v).

Next, we define metrics for graph layout.
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Figure 3: Comparison of the embedding and clustering metrics over all graphs, where the means µ are solid thick lines and the
standard deviations σ are thin dashed lines of the same color; the number of nodes in the graph is |V | ∈ {50,100, . . . ,500}.

Stress. The stress of an embedding is a classic MDS met-
ric, which measures the energy of the spring system; we use
the normalized version of the metric suggested in [GKN04]:

stress =
1
m ∑

u,v∈V
w(u,v)

(
||pu− pv||−dvu

max(||pu− pv||,duv)

)2

,

where m = 1
2 ∑uv w(u,v). Low stress indicates a good solu-

tion; as value 1 is best in all our metrics, we use 1− stress.

Distortion. Distortion measures whether the distances be-
tween pairs of nodes are proportional to the desired dis-
tances. Consider a matrix of ideal distances with entry duv
for nodes u and v, and a matrix of actual distances between
corresponding points with ∆uv = ||pu − pv||. The matrices
are seen as two random variables for which the correlation
coefficient r is computed. Since r takes values between −1
and 1, the metric is given by (r+1)/2.

Neighborhood Preservation. For each node v, T adjacent
nodes of v are selected and their Euclidean distances to v are
measured. The percentage of the T nodes that are within dis-
tance d(T ) (the distance of the T -th closest node to v in the
graph space), averaged over all nodes v, measures neighbor-
hood preservation [VPN∗10]. As suggested in [GHN12], we
use T = 20 in our experiments.

Since EBA preserves the given embedding, we only re-
port its performance on the clustering metrics; see Fig 3. On
average, EBA results in lower modularity, conductance, and
coverage compared to the default (modularity-based) clus-
tering of GMap. However, the reductions are less than 20%.
It is worth noting that for small maps (50 and 100 nodes) the
EBA clustering steadily outperforms the default one. More
careful analysis shows that the second step of EBA (“local
refinement”) is very effective for maps of smaller size.

Since CBA preserves the given clustering, we only report
its performance on the embedding metrics; see Fig 3. On

average, CBA produces layouts with worse embedding met-
rics. The average decrease is 13% for stress, 10% for distor-
tion, and 7% for neighborhood preservation. The CBA met-
rics are very similar to the default GMap values for instances
in which the underlying graph is dense and the default map is
highly fragmented. For some of datasets (international trade
data), CBA had better results than the default (e.g., 9% better
neighborhood preservation).

EBA is very fast, taking few milliseconds to process the
largest tested graphs. CBA is less efficient producing maps
with 100 nodes in a few seconds and maps with 500 nodes
in under a minute. Improving performance of CBA (for ex-
ample, with a hierarchical approach) is a future direction.

5. Conclusion and Future Work

We designed, implemented, and evaluated two approaches
for generating contiguous maps. These approaches can be
applied in different scenarios depending on the input data
and user preferences. The simpler and more efficient EBA
tends to produce maps with slightly worse clustering met-
rics. CBA keeps the clustering and aims to preserve the em-
bedding. Although we utilized the GMap framework, other
techniques can also benefit from these methods. For exam-
ple, applying BubbleSets on top of the results of EBA or
CBA may remove overlaps between disjoint clusters. An on-
line tool and source code for the algorithms is available at
gmap.cs.arizona.edu.

Although contiguous maps seem more readable, fragmen-
tation might encode important information, e.g., close rela-
tionships between the members of a fragmented group with
other groups. It would be worthwhile to identify such “mean-
ingful” fragmentation and show it on the map. Similarly
interesting would be in-depth user study comparing map-
based visualizations and investigating the impact of cluster-
ing quality and embedding quality on map comprehension.
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