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Figure 1: A visual analytics framework for exploring the solar and wind power parameters for renewable energy resource planning. Map
view is showing Global Horizontal Irradiance (GHI) for a given region. Yearly, monthly and daily cumulative sums are shown in linked plots.

Abstract

Renewable energy growth is one of the focus areas globally against the backdrop of the global energy crisis and climate
change. Energy planners are looking into clean, safe, affordable, and reliable energy generation sources for a net zero future.
Countries are setting energy targets and policies prioritizing renewable energy, shifting the dependence on fossil fuels. The
selection of renewable energy sources depends on the suitability of the region under consideration and requires analyzing
relevant environmental datasets. In this work, we present a visual analytics framework that facilitates users to explore solar and
wind energy datasets consisting of Global Horizontal Irradiance (GHI), Direct Normal Irradiance (DNI), Diffusive Horizontal
Irradiance (DHI), and Wind Power (WP) spanning across a 40 year period. This framework provides a suite of interactive
decision support tools to analyze spatiotemporal patterns, variability in the variables across space and time at different temporal
resolutions, Typical Meteorological Year (TMY) data with varying percentiles, and provides the capability to interactively
explore and evaluate potential solar and wind energy equipment installation locations and study different energy acquisition
scenarios. This work is conducted in collaboration with domain experts involved in sustainable energy planning. Different use
case scenarios are also explained in detail, along with domain experts feedback and future directions.

CCS Concepts
• Human-centered computing → Visual analytics; • Applied computing → Environmental sciences;
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1. Introduction

There is a great global push toward renewable and clean energy
sources, and there are many drivers accelerating these develop-
ments such as climate change, increasing fossil fuel prices, and
improvements in technology. Many countries are developing en-
ergy plans to increase the contribution of renewable energy sources
in their energy mix. Energy planners and policymakers are increas-
ingly incorporating sustainable energy generation options in their
energy plans for large-scale infrastructures and associated develop-
ment projects. Incorporating these sustainable energy resources in
the overall energy mix and ensuring an uninterrupted power supply
requires extensive planning, exploring diverse scenarios, evaluating
feasibility, and identifying suitable regions for energy harvesting.
The question of where to install the large-scale renewable energy
farm can be addressed by exploring the historic and geographical
prominence of various locations in the domain of interest.

Analysts use data-driven simulation models [DDL-19a] to ad-
dress these challenges and make calculated decisions. They need
to characterize sustainable energy resources by conducting spatial
and temporal assessments at varying resolutions. They also need to
explore variability in simulated energy sources at different tempo-
ral scales, and access other linked statistical measures for any se-
lected site. Spatial and temporal analysis reveals possible sites for
energy-generating infrastructure like solar thermal plants and wind
turbines. Analysts use derived measures such as Typical Meteoro-
logical Year (TMY) and linked statistics to improve estimation and
operational strategies.

In this work, we present a visual analytics framework that can
facilitate interactive exploration, and visualization of solar and
wind energy profiles of reanalysis data of Global Horizontal Ir-
radiance (GHI), Direct Normal Irradiance (DNI), Diffusive Hor-
izontal Irradiance (DHI), and Wind Power (WP) during 1980 –
2020. The reanalysis datasets presently being used are generated
by assimilating observations from a variety of sources, includ-
ing surface stations, radiometers, satellites, and other instruments,
into the Weather Research and Forecasting (WRF) solar system
[MCK13, RBABHT∗20, LWT∗21]. The generation of the reanal-
ysis data using the observation stations along with the validation
is described in detail by [DDL∗19]. The framework enables spa-
tiotemporal exploration of generated renewable energy outputs and
other derived datasets through a suite of linked visualizations. The
framework gives users the ability to explore TMY, Variability, and
historical changes that occurred at any selected location to figure
out the best potential locations to extract maximum renewable en-
ergy. Also, the total estimated power generation, if installed at the
selected location, can be matched against the energy demand re-
quirements taken from the user.

2. Related Work

The smart city concept is becoming ubiquitous [HJ∗22]. Data
visualization and analytics play an efficient role in understand-
ing the data generated by these smart cities, finding underly-
ing patterns and insights, and eventually assisting the decision-
makers [CMJBGMG22, CLW∗18]. Renewable energy profiling is
becoming one of the important focus areas due to the global en-

ergy crunch and a need to focus on green energy [RRR22, UNC23,
GGW∗19, JPNGE12, AE∗19].

In the recent past, various tools have been proposed to analyze
energy datasets obtained from various sources and then do de-
mand planning based on predictions of the data [KKK∗14]. Carli
et al. [CAD∗15] designed a dashboard and decision-making tool
to efficiently analyze energy data for environmental sustainability.
Adepetu et al. [AGA∗12] proposed a sustainable energy decision
support system to analyze a city energy system. Chen showed in
[Che23] how visualization can effectively help analyze and fore-
cast energy data. Carli et al. [CDDP14] proposed a decision man-
agement system for analyzing the renewable energy data for a smart
city. Moghadam et al. [TCM∗19] designed a visualization system
to help urban planners in energy analysis. Hamad et al. [HAA21]
recently proposed a simulation of the renewable energy demands
for the futuristic Neom city of Saudi Arabia. Some work has also
been done in the areas of residential energy data analysis, model-
ing, and forecasting [GAAZD20, TVS∗22]. There is also a recent
trend of using deep learning and machine learning techniques to ac-
curately model and predict energy demand [SRA21, GN19, Vij22].
Our work differs from the above-mentioned papers as our presented
framework is designed to cater to the specific domain scientist’s re-
quirements that these tools do not provide.

3. Tasks and Requirements Analysis

This work was completed in close collaboration between energy
planners, atmospheric domain scientists, and visualization experts.
We first examined the needs of sustainable energy resource plan-
ners and decision-makers. We identified the solar and wind energy
profiles needed to be built based on available datasets. The simula-
tion models and observational datasets utilized in this investigation
are described in Section 5. Later, the functional task requirements
were collected in discussions focused on how the domain experts
envision the analysis workflows for harvesting sustainable energy
resources. These requirements were gradually refined in multiple
iterations and discussion sessions among the collaborators. These
interactions yielded the following tasks and design requirements:

T1: Explore energy concentrations and linked statistics for solar
and wind energy datasets in a geospatial environment

T2: Spatiotemporal exploration of the reanalysis datasets (raw and
derived) of solar and wind energy variables.

T3: Selection, filtering and drill-down capabilities supporting spa-
tiotemporal exploration of solar and wind datasets.

T4: Explore annual, monthly, daily, and hourly solar and wind en-
ergy variations for any selected location

T5: Explore cumulative sums of solar and wind energy variables
across space and time at varying temporal resolutions.

T6: Explore Typical Meteorological Year (TMY) data for solar and
wind variables at varying percentiles across space and time.

T7: Build and explore different energy generation scenarios
through placement of solar installations.
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4. Visual Analytics Environment

Our visual analytics environment consists of multiple linked vi-
sualizations (Figure 1). These visualizations include a geospatial
map view that lets users interactively explore and analyze solar
(DHI/DNI/GHI) and wind energy data (T1, T2) on a grid-ded map.
Through selection and filtering options related to these views (T3,
T4, T5, and T6), users may load and analyze variability, cumula-
tive sums, and Typical Meteorological Year (TMY) data (P75, P90,
and P99 percentiles) relevant to solar and wind energy variables.
After selecting a variable, the map view displays a relevant color-
coded spatiotemporal dataset. Users may explore spatial data in the
map view and scroll through time at different temporal granulari-
ties. After selecting the region of interest, a linked stack of time se-
ries visualizations displays energy data at annual, hourly, monthly,
and hourly scales along with variability statistics. Time series vi-
sualization options update the map view (T3) since both views are
connected.

This functionality allows interactive multi-dimensional data
searches and diverse analytical workflows. Users may examine
trends and study odd data variations, and the interactive drill-down
functionality helps domain scientists and decision-makers evalu-
ate solar and wind factors at multiple levels of detail and compare
places of interest. Variability, cumulative sums, and TMY datasets
for solar and wind energy are supported. Figure 1 illustrates a user
selecting GHI solar irradiance. The map view displays cumulative
sums for July 1988, which the user chose in the time series view,
along with annual, monthly, and daily time series data. Users may
interactively place solar panels on the map and estimate monthly
energy production in the scenario-building view (Fig. 4). System-
supported solar energy characteristics determine panel placement.
Energy generation thresholds may also be used to filter grid cells on
the map with required energy generating potential. Users may also
enter a demand curve estimating monthly energy needs. The linked
time series shows energy production and demand curves along with
surplus/deficit information as a bar graph. This interface lets users
create and examine data-driven energy-generating scenarios (T7).

5. Data and Methodology

We have used an assimilative configuration of the WRF Solar
model [MCK13, RBABHT∗20, LWT∗21] to generate Global Hori-
zontal Irradiance (GHI), Direct Normal Irradiance (DNI), and Dif-
fusive Horizontal Irradiance (DHI) datasets for a period of 40 years
(1980 - 2020). We ran the simulation model on a high-performance
computing platform (SHAHEEN supercomputer [HKF∗15]). Ob-
servations from 46 ground-based radiometer observatories across
the Arabian peninsula are considered over a period of 4 years to
minimize the modeling uncertainties and the accuracy of the mod-
eled data as elaborated by Dasari et al. [DDL∗19]. The datasets
with a spatial resolution of 5km x 5km and temporal resolution
of one hour, having size around 158 GB is produced as an output
by the reanalysis. We derive further datasets representing cumula-
tive sums, variability, and Typical Meteorological Year(TMY) from
these datasets. To represent a synthetic year for the NEOM region,
Typical Meteorological Year (TMY) values are calculated for each
grid point. The daily average values are determined using the me-
dian (Percentile 50) and pessimistic values (Percentile 75, 95, and

99). Percentiles such as 75, 90, and 99 are generally used to obtain
a conservative estimate that is close to the lowest value over time.
The variability is also calculated along with TMY to aid in better
estimation and operational planning. The TMY and Variability val-
ues provide a better understanding of the potential energy that can
be harnessed from a solar plant installed at a specific location.

E = A∗ r ∗H ∗PR,

(In simple terms, Solar power = Irradiance x Efficiency x Area)
where E is the computed energy (Watts), A is the total area covered,
r is the solar panel yield, H is the average solar radiation and PR
is the performance ratio. In the present study, we have used the
standard performance ratio of 0.75 and fixed the solar panel to 15.6,
considered ideal under Standard Testing Conditions [BPE17].

Similar to TMY for solar power, TMY for wind power is cal-
culated based on long-term historical data. The present framework
uses hourly wind speed data for the same period (1980 - 2020). The
data includes wind speed, wind direction, and air density, which
are used to calculate the power output of a wind turbine. Once the
TMY data is obtained, it can be used to estimate the annual en-
ergy production of a wind turbine at the location of interest. This
information is useful for energy planning for a given region. The
following equation is used to determine the amount of electrical
power that can be generated by a wind turbine:

Power = 0.5∗P∗A∗V 3 ∗Cp,

where Power is the output power in Watts, P is the air density
(kg/m³), A is the swept area of the turbine blades (m²), V is the
wind speed (m/s), Cp is the power coefficient of the turbine, which
is a measure of its efficiency in converting the wind’s energy into
electrical power. The value of Cp typically ranges from 0.25 to 0.45
for modern wind turbines [CRSMLR20, JPJ13].

6. Implementation Details

The underlying framework used to build this visual analytics en-
vironment consists of a multitiered architecture. The bottom-tier is
the ‘data generator’, which executes physical models on an HPC
platform (SHAHEEN) to generate forecasts. The output files are
transferred to the ‘analytics and visualization’ server. This server
contains the backend core application (containing all the algorith-
mic code) and visualization dashboard components. Different ap-
plication services accessible via RESTful API can also be deployed
on the server. The backend core is primarily implemented using
Python, Numpy, Ferret, Climate Data Operator, NetCDF4, and
MySQL. Server configuration consists of Flask, gunicorn, and NG-
INX. Visualization dashboard components are built using Leaflet,
D3, Highcharts, Angular, Materialize, JavaScript, HTML, and CSS.

7. Use Case Scenarios: Solar and Wind Energy Harvesting

Installing large solar plants depends on several factors, including
the distance from the demand site, availability of radiation val-
ues above certain thresholds, terrain constraints, battery capacity,
dust losses, temperature variations, and wind anomalies. To sim-
plify decision-making, the present visual analytics framework en-
ables users to investigate high solar and wind energy yield intensity
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Figure 2: Examination of the prospective site for solar plant installation. (Left) demonstration of spatial intensities over an interactive map.
(Center) monthly and daily variability of the GHI values based on historical data along with the Typical Meteorological Year values. (Right)
Exploring historical GHI values at yearly, monthly, and daily timescales.

regions by exploring the cumulative sum of concentrations over-
laid on an interactive map. However, it’s important to examine the
variability and TMY at 90 and 99 percentiles at the selected loca-
tions which gives the standard deviation based on historical data,
while TMY provides the percentile value closer to the minimum.
For large solar plant installations, TMY at 95 or 99 percentiles is
primarily used as it guarantees minimum radiation values.

The system can derive estimated power generation by interac-
tively placing grids of panels at the selected locations (Section 5).
The framework also enables users to weigh the generated power
against hypothetical monthly demand requirements, allowing them
to determine the number of grids needed to meet their require-
ments. Analysis of the energy potential at a particular location is
presented in Fig 2. Overall, this approach can help optimize the
placement and performance of solar plants and improve the effi-
ciency of renewable energy resources. After identifying potential
locations based on the cumulative energy concentration of the re-
gion (T1), further filtering can be performed by considering fac-
tors such as variability and TMY values at the 99 percentile for the
selected locations (T4, T6). At the locations with minimum vari-
ability and maximum TMY values, users can simulate virtual solar
panels and calculate the average power generation for 1000 indi-
vidual panels (Fig 4). Furthermore, users can add more panels and
compare the expected power generation against their demand (T7).
The current system for evaluating wind power potential enables
decision-makers to compare different areas and determine where
wind energy farms would work best. The process for identifying
suitable locations is similar to that used for solar panel placement.
The analysis of wind power potential starts with a look at how wind
power concentration is spread out across the whole region. Fig. 3
compares the wind power potential of the western region against

the eastern region. This shows that the area along the Gulf of Aqaba
up to Tiran Island is more suitable for harvesting wind energy. The
values of variability and TMY are looked into to learn more about
wind power patterns.

8. Domain Experts Feedback

We collected feedback from two domain scientists (not co-authors)
working in academia. One is an expert on materials and solar cell
design and the other works on manufacturing technologies for en-
ergy harvesting and generation. Initially, we demonstrated the sys-
tem to the experts showcasing the features and complete function-
ality. Then they explored the system on their own, working on dif-
ferent use case scenarios.

In their feedback, they mentioned that overall the dashboard pro-
vides an efficient way to explore long-term historical datasets of
solar radiation and wind power. Exploring typical meteorological
year and variability is especially helpful for obtaining a more accu-
rate estimate of how much power can be harvested at each location
of the region of interest. The system would be even more pow-
erful when parameters such as wind speed, temperature, rainfall,
and dust storm information are interactively varied for carrying out
sensitivity analysis. Also, from the stakeholder’s point of view, the
capability to select from multiple solar panel configurations would
result in better planning for installation and mass procurement.

9. Future Directions

Once a solar plant is established, the operational short-term fore-
cast becomes crucial for planning oversupply and undersupply. To
achieve this, the system can utilize Artificial Intelligence (AI) tech-
niques to analyze low-level, mid-level, and high-level cloud cover
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Figure 3: Comparison of the historical wind power potential along the Gulf of Aqaba and the eastern region of NEOM.

Figure 4: Interactive placement of solar panels. Linked time-series
views are showing (a) the estimated energy generated by the se-
lected solar panel on the map (top right), and (b) the Average
monthly power generation, providing a comparison between hypo-
thetical energy demand and estimated production (bottom right).

data, in addition to other weather data, to generate more accurate
predictions of energy generation. This will enable energy planners
to better manage the gap between supply and demand, ensuring a
reliable and stable power supply. Integrating deep learning architec-
tures like convolutional LSTM can help learn spatial and temporal
patterns, and can facilitate planning for solar droughts.

The future version of the system will parameterize solar panel
yield, wind speed, and surface temperature for estimating energy
generated by specific solar panels and wind turbines. This will pro-
vide a simplified model for estimating energy generation potential
at different locations, allowing planners to identify suitable sites for
solar plant installations. We will integrate a database of solar panels
that would enable users to make multiple energy generation plans

satisfying multiple criteria. Also, we will extend the visualization
framework to enable users to manage and compare a large num-
ber of scenarios. We will further add support to create scenarios for
wind energy infrastructure as well. We will evaluate the impact of
any infrastructure around the planned solar and wind energy instal-
lations and how it may affect potential energy yield. we also plan to
conduct a more comprehensive user evaluation focused on practical
sustainable energy planning scenarios.

10. Conclusions

The process of profiling and planning for optimal energy generation
is facilitated by the presented visual analytics framework. By ana-
lyzing data at the 99th percentile and studying its variability, it is
possible to estimate the potential solar power and identify optimal
locations for energy harvesting within a specific area. The statis-
tics related to the reliable reception of energy are drawn, forming
the basis for plant installations. The ability to interactively explore
solar and wind energy related data and visualize it through mul-
tiple linked visualizations enables users to build and explore dif-
ferent data-driven energy generation scenarios, allowing for more
efficient assessments and decision-making. Overall, this work em-
phasizes the potential benefits of leveraging data analysis and vi-
sualization tools to optimize renewable energy production and sup-
ports efforts to transition to a more sustainable energy future.
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