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Abstract

Projections, or dimensionality reduction methods, are techniques of choice for the visual exploration of high-dimensional data. Many such techniques exist, each
one of them having a distinct visual signature — i.e. a recognizable way to arrange points in the resulting scatterplot. Such signatures are implicit consequences of
algorithm design, such as whether the method focuses on local vs. global data pattern preservation; optimization techniques; and hyperparameter settings. In this
work, we present a novel projection technique — ShaRP — that instead provides users explicit control over the visual signature of the created scatterplot, which can
cater better to interactive visualization scenarios. ShaRP scales well with dimensionality and dataset size, generically handles any quantitative dataset, and provides
this extended functionality of controlling projection shapes at a small, user-controllable cost in terms of quality metrics.
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A COMPARISON ACROSS ALL STUDIED PROJECTION TECHNIQUES

Fig. 1 shows a comprehensive comparison of results obtained by ShaRP (rightmost part of the image) and other techniques against which we compare. The AG, KM, and GT variants
correspond to (pseudo)labels obtained by Agglomerative Clustering, K-Means, and ground truth labels, respectively.

Figure 1: Comparison between all possible pairs of algorithm and dataset among those studied in this work.



B FURTHER CLUSTER SHAPING

In our work, we show ShaRP’s ability to reshape clusters into rectangles/squares and triangles. Here, we show this feature over more datasets
and with varying hyperaparameters.

Exploring squarified cluster generation
We are able to produce shapes that conform to squarified/rectangular shapes by employing a generalized Normal distribution in our sampling
scheme. We show in Fig. 2 the results of varying the shape hyperparameter ω over different datasets.

Figure 2: Demonstration of shape regularization towards rectangles for different values of ω across all datasets.

Exploring triangular cluster generation
We first define an equilateral triangle in R2 by arranging its vertices v1,v2,v3 in a matrix as

T = [v1 v2 v3] =

[
0 1/2 1
0

√
3/2 0

]
The base shape is a source of bias, so we choose a base triangle that is symmetric around its center, i.e. equilateral. This initial bias can be

overcome through the training process via a necessary extension we add to the sampling scheme.
Any convex combination of v1,v2, and v3 gives a point in the interior of this triangle – this is what using barycentric coordinates means. If

we have a vector w = [w1 w2 w3]
T where wi ∈ [0,1], i ∈ {1,2,3} and ∑

3
i=1 wi = 1, we obtain an interior point p ∈ R2 by p = Tw.

Thus, we need to use a sampling distribution in ShaRP that generates vectors with the same properties as w above. The Dirichlet probability
distribution

w ∼ Dir(α1,α2,α3)⇒ w ∈ [0,1]3,
3

∑
i=1

wi = 1 (αi > 0, ∀i)

does exactly that. We choose as prior the “uniform” distribution on the triangle, which corresponds to Dir(1,1,1).
If we stopped here, our algorithm would fail to learn a useful embedding since every data point will draw samples from a single triangle,

i.e., the encoding layer will map all points to the same region in 2D space. Hence, we augment our sampling scheme to allow triangles to be
rotated, scaled, and translated.

The set of learned parameters used to force shapes into triangles is then θ = (φ ∈ [−π,π],sx ∈ R+,sy ∈ R+, tx ∈ R, ty ∈ R,α1,α2,α3).
Here, φ is a rotation angle; sx and sy are scaling factors in the x and y directions; tx and ty are translation amounts in the x and y directions; and
αi are the sampling distribution parameters. A forward pass through this layer is then given by

w ∼ Dir(α1,α2,α3)

p =

[
cosφ −sinφ

sinφ cosφ

][
sx 0
0 sy

]
Tw+

[
tx
ty

]
As a result, we get clusters that are shaped like triangles. This parameterization is capable of generating every possible triangle in R2 and
is more convenient than learning triangle vertices directly. We can even add individual regularization losses depending on the parameter’s
semantics. For example, we choose not to add regularization to φ , to allow it to freely range over its domain; we regularize sx,sy towards 1 and
tx, ty towards 0.

We show in Fig. 3 the effect this has on different datasets, as well as what happens when we remove a degree of freedom from the sampling
scheme, namely freezing the tx, ty translation amounts at 0.



Figure 3: Triangle-oriented shape regularization demonstrated for all datasets studied. We present all three variants of ShaRP and also explore
the impact of (dis)allowing the trainslation of triangles in space.



C DETAILED PERFORMANCE MEASUREMENTS

ShaRP is one of the fastest techniques among the ones we compare it to. We show here the performance of learning a projection function
(when the algorithm requires it) and then projecting the data points. These two steps are performed over an increasing number of samples, and
we can see how the run time of different algorithms increases. t-SNE notably grows faster than all other techniques studied, while ShaRP
presents run time growth linear in the number of training examples.

Figure 4: Run time measurements of fit transform calls for different algorithms across all studied datasets.



D DETAILED PROJECTION QUALITY METRICS

For completeness and ease of scrutiny, we provide the non-aggregated quality metrics the main paper’s Tables 2 and 3. These are shown
respectively in Table 1 and Table 2. ShaRP is also able to perform inverse projection since it uses an Auto-Encoder. We report here the Mean
Squared Error between an input and its reconstruction as a quality measure of the inverse projection both over data (Train MSE) used for
training and unseen data (Test MSE).

Table 1: Non-aggregated quality metrics for all combinations of technique and dataset used in our work.

Algorithm Dataset Trustworthiness Continuity Shepard Correlation Stress Neighborhood Hit Distance Consistency Train MSE Test MSE

Isomap

FashionMNIST 0.920 0.976 0.749 3.740 0.685 0.544 — —
HAR 0.924 0.971 0.899 12.020 0.863 0.729 — —
MNIST 0.760 0.959 0.526 2.467 0.621 0.490 — —
Reuters 0.625 0.756 -0.153 1.834 0.753 0.540 — —
USPS 0.855 0.973 0.679 1.716 0.762 0.633 — —

t-SNE

FashionMNIST 0.990 0.987 0.664 5.351 0.843 0.656 — —
HAR 0.992 0.985 0.578 48.560 0.969 0.813 — —
MNIST 0.985 0.972 0.410 8.961 0.945 0.781 — —
Reuters 0.742 0.912 0.021 30.816 0.846 0.580 — —
USPS 0.989 0.983 0.508 36.068 0.969 0.941 — —

UMAP

FashionMNIST 0.981 0.988 0.642 0.175 0.804 0.665 — —
HAR 0.979 0.989 0.770 3.609 0.935 0.733 — —
MNIST 0.957 0.974 0.385 0.236 0.918 0.841 — —
Reuters 0.662 0.862 -0.107 2.045 0.759 0.517 — —
USPS 0.972 0.985 0.430 0.883 0.958 0.950 — —

NNP[t-SNE]

FashionMNIST 0.966 0.987 0.679 0.925 0.772 0.656 — —
HAR 0.967 0.985 0.619 0.846 0.906 0.812 — —
MNIST 0.941 0.969 0.407 0.913 0.879 0.728 — —
Reuters 0.687 0.910 0.016 0.820 0.797 0.567 — —
USPS 0.961 0.982 0.476 0.858 0.955 0.938 — —

AE

FashionMNIST 0.964 0.977 0.501 0.344 0.738 0.628 0.027 0.029
HAR 0.945 0.974 0.825 0.301 0.822 0.653 0.006 0.006
MNIST 0.912 0.914 -0.048 3.091 0.741 0.492 0.039 0.041
Reuters 0.637 0.751 0.186 1.623 0.809 0.705 0.001 0.001
USPS 0.932 0.958 0.222 0.740 0.857 0.663 0.027 0.029

SSNP (AG)

FashionMNIST 0.950 0.975 0.720 0.242 0.750 0.539 0.034 0.035
HAR 0.925 0.966 0.607 0.245 0.867 0.777 0.007 0.007
MNIST 0.856 0.924 0.218 0.420 0.811 0.638 0.046 0.048
Reuters 0.604 0.790 0.226 0.270 0.753 0.649 0.001 0.001
USPS 0.897 0.963 0.424 0.275 0.878 0.772 0.034 0.035

SSNP (KM)

FashionMNIST 0.961 0.981 0.722 0.188 0.744 0.650 0.030 0.031
HAR 0.931 0.959 0.546 0.210 0.819 0.588 0.007 0.007
MNIST 0.881 0.920 0.392 0.328 0.757 0.464 0.045 0.046
Reuters 0.616 0.816 0.266 0.601 0.750 0.634 0.001 0.001
USPS 0.915 0.959 0.465 0.306 0.852 0.727 0.032 0.034

SSNP (GT)

FashionMNIST 0.865 0.931 0.389 0.539 0.928 0.866 0.044 0.044
HAR 0.882 0.942 0.640 0.413 0.991 0.982 0.008 0.008
MNIST 0.779 0.920 0.362 0.569 0.993 0.927 0.052 0.052
Reuters 0.585 0.760 0.325 0.488 0.979 0.969 0.001 0.001
USPS 0.870 0.954 0.508 0.555 0.991 0.918 0.038 0.039

ShaRP (AG)

FashionMNIST 0.917 0.956 0.698 0.864 0.711 0.620 0.037 0.038
HAR 0.883 0.925 0.546 0.744 0.796 0.692 0.008 0.008
MNIST 0.822 0.910 0.167 0.859 0.776 0.669 0.052 0.052
Reuters 0.585 0.706 0.137 0.665 0.740 0.594 0.001 0.001
USPS 0.870 0.946 0.402 0.779 0.843 0.735 0.039 0.039

ShaRP (KM)

FashionMNIST 0.935 0.961 0.731 0.869 0.707 0.618 0.036 0.037
HAR 0.899 0.924 0.542 0.741 0.774 0.632 0.008 0.008
MNIST 0.860 0.904 0.135 0.859 0.731 0.594 0.050 0.051
Reuters 0.589 0.760 0.091 0.679 0.732 0.633 0.001 0.001
USPS 0.890 0.935 0.415 0.756 0.811 0.640 0.037 0.038

ShaRP (GT)

FashionMNIST 0.822 0.915 0.482 0.875 0.855 0.823 0.049 0.049
HAR 0.821 0.893 0.544 0.739 0.962 0.955 0.010 0.010
MNIST 0.736 0.900 0.289 0.857 0.979 0.958 0.054 0.054
Reuters 0.550 0.690 0.006 0.672 0.949 0.739 0.001 0.001
USPS 0.795 0.906 0.408 0.765 0.972 0.931 0.044 0.045



Table 2: Non-aggregated quality metrics for different sampling schemes within ShaRP.

Dataset Shape Trustworthiness Continuity Shepard
Correlation Stress Neighborhood

Hit
Distance

Consistency Train MSE

FashionMNIST

⃝ 0.835 0.907 0.463 0.880 0.829 0.766 0.048
□[ω = 15] 0.829 0.916 0.495 0.891 0.813 0.771 0.049
□[ω = 5] 0.825 0.915 0.485 0.892 0.842 0.816 0.050
△ 0.826 0.898 0.482 0.875 0.895 0.781 0.050
△† 0.807 0.808 0.208 0.866 0.834 0.641 0.053

HAR

⃝ 0.823 0.810 0.521 0.749 0.965 0.829 0.010
□[ω = 15] 0.829 0.886 0.513 0.768 0.928 0.909 0.010
□[ω = 5] 0.825 0.880 0.582 0.749 0.952 0.936 0.010
△ 0.828 0.854 0.563 0.662 0.978 0.921 0.010
△† 0.830 0.824 0.426 0.717 0.980 0.928 0.010

MNIST

⃝ 0.732 0.897 0.251 0.859 0.977 0.962 0.055
□[ω = 15] 0.735 0.900 0.230 0.864 0.968 0.948 0.055
□[ω = 5] 0.735 0.896 0.271 0.878 0.979 0.961 0.055
△ 0.747 0.874 0.119 0.850 0.986 0.896 0.054
△† 0.738 0.799 0.148 0.844 0.959 0.769 0.056

Reuters

⃝ 0.554 0.701 0.104 0.676 0.962 0.851 0.001
□[ω = 15] 0.558 0.715 0.256 0.760 0.977 0.953 0.001
□[ω = 5] 0.556 0.699 0.300 0.714 0.975 0.933 0.001
△ 0.560 0.696 0.265 0.581 0.981 0.953 0.001
△† 0.561 0.637 0.002 0.665 0.977 0.793 0.001

USPS

⃝ 0.802 0.922 0.285 0.774 0.973 0.931 0.044
□[ω = 15] 0.798 0.919 0.329 0.792 0.962 0.934 0.045
□[ω = 5] 0.799 0.918 0.350 0.793 0.975 0.948 0.045
△ 0.823 0.898 0.363 0.775 0.992 0.887 0.043
△† 0.804 0.826 0.185 0.763 0.972 0.837 0.045

Shape Sampling Scheme
⃝ ellipses, Gaussian sampling
□[ω = k] squares, generalized Normal sampling with ω = k
△ triangles, Dirichlet sampling
△† triangles, Dirichlet sampling with tx = ty = 0



E QUALITY METRIC DEFINITIONS

We provide the formal definition of each quality metric used in our work in Table 3. For this, we use the following notation: NN(K)
i is the set of

K-nearest neighbors of xi in the high-dimensional space; N̂N
(K)
i is the set of K-nearest neighbors of x̂i = P(xi) in the low-dimensional space.

We also use these as functions, omitting the data point index: NN(K)
i = NN(K)(xi). We denote by r(i, j) (resp. r̂(i, j)) the rank of the Rn (resp.

Rq) point x j (resp. P(x j)) in the ordered set of nearest neighbors of xi (resp. P(xi)) in Rn (resp. Rq). Further, we use Y : X →{1, . . . ,K} as the
function that outputs a given data point’s label (where here K means the number of classes) and c : {1, . . . ,K}→Rn as the function that returns
the centroid of a given class. We also employ indicator function notation J·K, that returns 1 when the condition inside it is true, and 0 otherwise.

Table 3: Quality metric definitions. The best value for each metric is bold under the Range column.

Metric Definition Range Parameters
Trustworthiness [4] 1− 2

NK(2n−3K−1) ∑
N
i=1 ∑

j∈NN(K)
i \N̂N

(K)

i
(r̂(i, j)−K) [0,1] K = 7

Continuity [4] 1− 2
NK(2n−3K−1) ∑

N
i=1 ∑

j∈N̂N
(K)

i \NN(K)
i

(r(i, j)−K) [0,1] K = 7

Shepard Diagram Correlation [1] Spearman’s ρ of (∥xi −x j∥,∥P(xi)−P(x j)∥),1 ≤ i ≤ N, i ̸= j [0,1] —

Stress [1] ∑x∈X ∑x′∈X(∥x−x′∥−∥P(x)−P(x′)∥)2

∑x∈X ∑x′∈X∥x−x′∥2 [0,∞) —

Neighborhood Hit [2] 1
N ∑x∈X

|{x′∈X |P(x′)∈N̂N
(K)

(P(x))∧Y (x′)=Y (x)}|
K [0,1] K = 7

Distance Consistency [3] 1
N ∑x∈XJY (x) = argminy∈{1,...,K}∥P(x)−P(c(y))∥K [0,1] —

Mean Squared Error 1
N ∑x∈X∥x−P−1(P(x))∥ [0,∞) —
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