EuroVis Workshop on Visual Analytics (2022)
M. Angelini and J. Bernard (Editors)

Towards Understanding Edit Histories of Multivariate Graphs

P. Berger and H. Schumann and C. Tominski

Institute for Visual & Analytic Computing, University of Rostock, Germany

Abstract

The visual analysis of multivariate graphs increasingly involves not only exploring the data, but also editing them. Existing
editing approaches for multivariate graphs support visual analytics workflows by facilitating a seamless switch between data
exploration and editing. However, it remains difficult to comprehend performed editing operations in retrospect and to compare
different editing results. Addressing these challenges, we propose a model describing what graph aspects can be edited and
how. Based on this model, we develop a novel approach to visually track and understand data changes due to edit operations.
To visualize the different graph states resulting from edits, we extend an existing graph visualization approach so that graph
structure and the associated multivariate attributes can be represented together. Branching sequences of edits are visualized as
a node-link tree layout where nodes represent graph states and edges visually encode the performed edit operations and the
graph aspects they affect. Individual editing operations can be inspected by dynamically expanding edges to detail views on
demand. In addition, we support the comparison of graph states through an interactive creation of attribute filters that can be

applied to other states to highlight similarities.

CCS Concepts
e Human-centered computing — Visual analytics;

1. Introduction

In addition to analysis-oriented tasks, data editing and data wran-
gling has become increasingly important in visual analytics sce-
narios [Bau06, KHP*11]. Editing the data can be necessary to pre-
pare the data for their analysis, to update information, to correct
errors, or to experiment with different what-if scenarios. Baudel
was among the first to propose the integration of data manipulation
facilities directly into visual representations of data [Bau06]. Based
on what Baudel calls the direct manipulation principle, several
previous works have proposed dedicated solutions to edit graphs
and data attributes directly in the visualization [GSE* 14, EGST16,
HBS*21]. These approaches support visual analytics workflows
where users can switch seamlessly between data exploration and
data editing. Users can carry out edits directly in the visualiza-
tion and immediately see how they take effect locally (e.g., deletion
of an edge or change of an attribute value) and impact the overall
graph globally (e.g., changes of graph properties and value distri-
butions). This is not only useful for data correction, but also for hy-
pothesis testing of what-if scenarios (e.g., planning new bus routes
and stops [WZD*21] or developing soccer teams [BST22]).

In general, data editing and what-if testing are iterative processes
where users may try out several alternative edits before arriving at
a final result. Therefore, comprehending editing steps in retrospect
and comparing multiple alternative outcomes are important tasks to
be supported by visual analytics tools. In addition to understanding

(© 2022 The Author(s)
Eurographics Proceedings (©) 2022 The Eurographics Association.

DOI: 10.2312/eurova.20221083

what has changed during an editing phase, it can also be of interest
to understand how the edits were performed (e.g., via individual al-
phanumeric inputs or via a continuous direct manipulation gesture).
However, so far, the iterative character of editing in terms of what
has changed during the process and how it was changed is mostly
ignored by current tools.

We follow the argumentation of Ragan et al. [RESC15], who
state that provenance information and its visualization can enhance
visual data analysis workflows and help users comprehend them
in retrospect. In our case, we focus on the purpose of understand-
ing edit histories. We build on previous research in the context of
dynamic graph visualization [BBDW17] and interaction history vi-
sualization [XOW*20]. Dynamic graph visualization has proven to
be useful for understanding what has changed in a graph over time,
or over a sequence of edit operations. However, dynamic graph vi-
sualizations usually do not consider how the data was changed. This
is where the visualization of interaction histories comes into play,
which depicts how performed user actions led to data changes. We
propose a combined visualization of aspects of dynamic graphs and
interaction histories to visually track changes caused by edit opera-
tions on multivariate graphs. Our contributions are (1) a model for
describing edit operations on multivariate graphs, (2) a novel visu-
alization for representing edit histories on multivariate graphs, and
(3) interaction facilities to support detail inspection and comparison
of edit operations and affected data.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/ 0000-0001-7704-355X
https://doi.org/10.2312/eurova.20221083

74 P. Berger & H. Schumann & C. Tominski / Towards Understanding Edit Histories of Multivariate Graphs

2. Related Work

Our work is related to the visualization of multivariate graphs and
their editing via direct manipulation as well as provenance visual-
ization, which touches aspects of visualizing dynamic graphs and
interaction histories.

Visualizing Multivariate Graphs The visualization of multivari-
ate graphs is comprehensively discussed in the literature [KPW 14,
NMSL19]. Existing approaches are typically based on node-link
diagrams or matrix representations. These base visualizations are
usually extended in order to represent multivariate data, for exam-
ple via incorporating additional views [KLS*17, NSL19], embed-
ding additional encodings [MB19,BST19], or laying out the graph
based on its attributes [SA06, WT08].

Editing Multivariate Graphs Following Baudel’s direct manipu-
lation principle [Bau06], previous work has combined exploration
and editing for fluent visual analytics workflows. The existing ap-
proaches differ in what data edits they support and how the edit
operations are performed. Eichner et al. [EGST16] propose edit-
ing node attributes in attribute-driven node-link representations by
continuous drag gestures. In contrast, the EditLens [GSE™ 14] facil-
itates the insertion and deletion of nodes and edges through discrete
tap and flick interactions. Editing edges in matrix representations
is similarly performed through tap and drag interactions on ma-
trix cells [GSLT15]. In so-called responsive matrix cells [HBS*21]
editing facilities are revealed dynamically as matrix cells respond
to size changes via focus+context. The graph structure and data at-
tributes can then be edited either through alphanumeric input or by
dragging data elements in the visualization directly.

While the listed approaches support on-the-fly editing of multi-
variate graphs, they do not consider provenance information about
what data has changed and how during the process.

Visualizing Provenance Information In general, the visualiza-
tion of provenance information supports the recalling of actions, the
replication of workflows, and the presentation of results [RESC15].
Here, we are concerned with edit operations on multivariate graphs,
a topic that is also related to dynamically changing graph models,
for example, in biology [GSE™ 14, SGT*18].

Changes in dynamic graphs can be visualized in various
ways [BBDW17], where two fundamental distinctions can be
made. The dimension of time is either mapped to time, resulting
in animations, or time is mapped to space, creating a timeline.
Animation-based approaches exist for node-link diagrams [BPF14,
FT04] and for matrices [RM14]. They provide an intuitive visu-
alization of what graph aspects change over time. However, since
an animation shows only a single snapshot of the graph at a time,
the mental effort required to integrate all observed snapshots to a
coherent overall mental model can be high.

Timeline-based approaches, on the other hand, show the entire
changes of the graph in a single image. There are approaches using
node-link diagrams [BVB*11], matrices [BCD*10], and adjacency
list [HBW14]. While changes of graph characteristics can be iden-
tified and traced along the timeline, scalability is a problem, as only
limited display space is available per graph representations.

Understanding how the data was edited is related to previous
work on visualizing interaction histories, which may include dif-
ferent system states, sequences of actions, or a combination of
both [HMSAO08, XOW*20]. System states are often displayed as
snapshots with annotations of the performed interactions [FCM138,
HMSAO08, BCD*10]. The visualization of branching action se-
quences is usually done via node-link diagrams [CGL20, KNS04].
Visualizing states and actions together is useful for externalizing
the iterative processes of editing data [JE13, DHRL"12].

In summary, dynamic graph visualization helps us to understand
what changed in a graph, whereas interaction history visualiza-
tion allows us to see how a graph was changed. In this work,
we aim to bring what and how together. Previous graph analy-
sis approaches [ZK15,ZK17] propose a combination of animated
changes and action sequences to visualize a linear edit history. As
we assume editing phases with a moderate number of operations
and branching histories, we utilize a time-to-space mapping and
an integrated encoding of edit operations to visualize what has
changed and how it was changed.

3. Approach Overview

In this section, we briefly discuss the requirements and present the
basic idea of our approach for visualizing edit operations on multi-
variate graphs.

Requirements Based on the problem description and the review
of related work, we identified the following requirements:

R1: Visualize what has changed. We need to display the differ-
ent states of a graph that are created due to edit operation in order
to understand what has changed (i.e., structure or attributes) and
what the consequences are (e.g., creation of new substructures or
changes in the attribute distribution).

R2: Visualize how it was changed. To understand how the graph
was changed, the performed edit operations should be visualized
to spot patterns (e.g., repetition of edits on the same parts of the
graph) and to identify details on how edits were performed (e.g.,
alphanumeric input or continuous direct manipulation gestures).

Basic Approach Addressing these requirements, we design our
approach as follows. Visualizing a multivariate graph is already
challenging. Visualizing multiple states of an edited multivariate
graph in full detail is therefore hardly possible. Instead, we have
to visualize the different graph states in an abstract and compact
manner. Here, we utilize and extend Graph thumbnails [YDK*18],
which allows us to visualize the graph states as compact thumbnails
in a tree layout. While the thumbnails address R1, the tree layout
is geared toward fulfilling R2. In the tree layout, the edges repre-
sent the edit operations that lead from one graph state to another.
The edges are visually enriched with stacked color-coded bars for
showing the edit operations and the affected graph aspects. Figure 1
gives an overview of our approach.

Next, we introduce a model for describing what graph aspects
can be edited and explain our approach for visualizing graph edit
histories based on that model in detail.

(© 2022 The Author(s)
Eurographics Proceedings (©) 2022 The Eurographics Association.



P. Berger & H. Schumann & C. Tominski / Towards Understanding Edit Histories of Multivariate Graphs

35% new nodes and
45% new edges inserted

Stacked bars represent affected data
entities (top to bottom: nodes, node attributes,
edges, edge attributes) and colors encode
edit operations (blue: insert, red: delete,
green: update, white: no edit)

o

Extended graph thumbnails —

represent different states
of the graph

10% of edges deleted

v

w
\ Creation of new subgraph
with higher k-core value
in the center
[GrbEle Won — —
T

=

75

Edit of a node attribute of several nodes
via a continous direct manipulation gesture

Time in seconds|

Creation of 4 new dis-
connected components

| I
Update attribute values of 10% of nodes,
resulting in a shift of values in the

violet histogram

v

Figure 1: Visualization of the editing history of a multivariate graph of soccer players, edited in a matrix representation [HBS*21]. Nodes
represent the aggregated graph structure and attribute distributions. Edges display the edit operation and affected graph aspects (stacked
color-coded bars). On demand, integrated visualizations are provided for details on the editing operation.

4. Modeling Edit Operations on Multivariate Graphs

In multivariate graphs, edit operations can affect different data en-
tities, including nodes, edges, node attributes, and edge attributes.
On these entities, three basic operations can be performed: insert,
delete and update [GSE*14]. In our context of direct visual edit-
ing, the edit operations are not just singular events, such as an al-
phanumeric input, but can consist of a sequence of multiple value
changes. Taking this into account, we model an edit history of a
multivariate graph G as another multivariate graph £g = (S, T,A)
where the nodes S define states, the edges 7' = S X S define state
transitions, and the edge attributes A capture detailed information
about edit operations.

e States: A node s € S represents a state that the graph G assumed
at one point in time. In other words, s represents a snapshot of
the multivariate graph being analyzed and edited.

e Transitions: An edge ¢ € T models a transition from one state to
another due to an edit operation. That is, a transition ¢ = (s,s”)
exists if s was created by performing edit operations on s.

e Edit operations: Transitions store information about the per-
formed edit. An edit is modeled as a tuple ¢ = (0,d,v) where o
is an operation o € {insert, delete, update}, d represents the ma-
nipulated data entities, which may be any subset of the union’
of the states involved in the edit operation d C sUs', and v
is a sequence of time-value pairs. For discrete edit operations
(e.g., via alpha-numeric value input), v consists of only a single
time-value pair v = (z,v). For continuous edit operations (e.g.,
via a slider or a direct manipulation gesture), v consists of mul-
tiple time-value pairs capturing all intermediate value changes
V= (tl,vl),...,(tmvn).

Next we describe how an edit history £g of a multivariate graph
G can be visualized for understanding editing provenance.

T The union is necessary to cope with the insertion of new information not
yet existing in state s and also the deletion of information which is no longer
present in state s’

(© 2022 The Author(s)
Eurographics Proceedings (©) 2022 The Eurographics Association.

<— Saved filter

Attribute histogram

T Dribbyg W,’ /

Min. value: 0
Max. value: 100

Contained substructure

. Attribute brush
Nested circles —

O\

Figure 2: lllustration of our extension of Graph thumbnails.

—

5. Visualizing Edit Operations on Multivariate Graphs

As outlined before, graph states are visualized as compact thumb-
nails in a tree layout whose edges encode information about the edit
operations. Aspects are explained in detail next.

Representing What has been Edited To understand what has
changed during editing, several states s € S of the multivariate
graph G have to be represented, where each s has its own topo-
logical graph structure and multivariate attributes. However, since
not all aspects of the graph can be visualized at once, a compact
representation is needed. A suitable approach for a graph state’s
topological structure are Graph thumbnails [YDK* 18], which visu-
ally preserve the key structural aspects of graphs (e.g., number and
properties of substructures). The compact thumbnail representation
outperforms treemaps and icicle plots in conveying hierarchies and
is comparable to node link and matrix representations in regards to
overview tasks on the structure [YDK™*18].

For Graph thumbnails, a graph is decomposed hierarchically
based on its connectivity using k-cores, which are subgraphs with



76 P. Berger & H. Schumann & C. Tominski / Towards Understanding Edit Histories of Multivariate Graphs

minimum degree k. This decomposition always guarantees identi-
cal hierarchies for isomorphic graphs and takes linear time depend-
ing on the number of edges. The resulting hierarchy of subgraphs
is then represented as nested circles whose area corresponds to the
subgraphs’ size as illustrated in Figure 2.

However, Graph thumbnails do not represent multivariate node
and edge attributes. Therefore, we extend Graph thumbnails by
adding histograms for individual attributes of the graph as ring seg-
ments as shown in Figure 2. Within these ring segments, the distri-
bution of attribute values is visualized as color-coded bar segments.
A darker bar indicates that a value occurs more often and a brighter
bar indicates that a value occurs less often. White segments, on
the other hand, mean that no value lies in this range. In addition,
the differences between the minimum and maximum of the value
ranges are depicted in the size of the individual ring segments.

Relations between the graph structure (thumbnails core) and the
multivariate attributes (thumbnail ring) can be revealed through in-
teractive highlighting. Hovering nested circles highlights the cor-
responding value ranges of nodes and edges in the attribute his-
tograms and vice versa.

In addition, we enable the on-demand display of individual struc-
ture elements within the nested circles during highlighting as node-
link diagram. This makes it possible to associate individual nodes
or edges with their multivariate attribute values (see Figure 2).

Together, the nested circles and the ring segments form a com-
pact visual representation where structural characteristics and at-
tribute properties are visible in a single coherent view. Key aspects
of a graph state’s structure and its attributes can still be detected, for
example, the number and composition of substructures as well as
attribute distributions and outlier values. This allows users to com-
pare multiple graph states for similarities and dissimilarities on an
overview level and the interactive highlighting provides additional
details on demand to better understand data changes due to edit
operations.

To further support the comparison of graph states, findings made
for one state should ideally be transferable to other states. To this
end, users can create attribute filters, which are specified by select-
ing individual values or by brushing entire value ranges in the his-
togram rings. Once defined, filters appear as extra circle segments
above the histograms in all graph thumbnails as shown in Figure 2
(top). The sizes of these extra segments visually encode the number
of edited graph entities in a graph state matching the filter specifica-
tion. As stated above, graph entities corresponding to the selected
values can be displayed on demand within the nested circles. In this
way, found properties in one graph state can be quickly compared
with all other states.

With the extended Graph thumbnails described so far, we fulfill
R1, that is, we can visually explore what has changed.

Representing How Edits were Performed In order to compre-
hend how edits have been performed, the specific operation o, the
affected data entities d and the value changes v must be shown.

To this end, we incorporate stacked bars into the edge represen-
tation of the tree layout of the overall edit history, as illustrated in
Figure. 1. For each transitions t € T between two states, we show

four horizontal bar charts to represent the data entities d. Each bar
chart corresponds to a type of data entity: nodes, node attributes,
edges, and edge attributes (from top to bottom). Edit operations o
are encoded by color: blue for inserts, red for deletes, and green
for updates. The lengths of the bars indicate the relative number of
edited nodes and edges. A white bar chart indicates that no edits
affected a particular type of data entities.

To visualize the actual value changes over time v, we again use
on-demand views. Each bar chart can be expanded dynamically to
a line plot to reveal details of the underlying data changes, where
different edit operations are shown as separate lines.

With the help of these views, users can understand how the data
edits were performed as demanded by R2. For example, abrupt
value changes indicate discrete alphanumeric inputs, whereas
smoother value changes suggest that edits were made using contin-
uous direct manipulations gestures. Figure 1 shows an on-demand
view in which attribute values for multiple nodes are changed con-
tinuously (e.g., moving nodes in a scatterplot [EGST16]).

6. Discussion

Our approach is meant to complement existing multivariate graph
visualizations with functionality to communicate and make com-
prehensible direct editing operations. The history shown in Figure 1
is an extract of a what-if analysis of a multivariate graph of soccer
players, which is edited in a matrix representation [HBS*21]. Our
edit history is used to comprehend the editing process and to com-
pare different graph states. The stacked bars and extended thumb-
nails enable us to spot patterns in the editing process and to get
feedback on the edit effects, e.g., changes in the attribute distri-
bution or substructures. Detailed information on individual edits
can be viewed on-demand. However, the aggregation of informa-
tion creates a dense representation in which it is difficult to identify
individual graph elements. In this regard, defining filters proved to
be helpful in finding and comparing substructures in different graph
states. For a detailed exploration of a graph state (incl. structure and
attributes) it is preferable to utilize a dedicated multivariate graph
visualization.

7. Conclusion

In this work, we presented a novel approach for the visualization
of edit histories of multivariate graphs. We introduced a model de-
scribing edit operations on graphs, a novel compact visual repre-
sentation of edit histories based on extended Graph thumbnails,
and corresponding interaction facilities to visually track and com-
pare data edits across several graph states. Our solution is meant to
complement existing multivariate graph visualizations with func-
tionality to communicate and make comprehensible direct editing
operations that may have occurred during visual analytics work-
flows involving data corrections or what-if testing.

In the future, we plan to further improve the utility of our tech-
niques. For example, many individual edit operations lead to a large
number of graph states in the tree layout, which makes exploring
and comparing difficult. We plan to support these tasks by aggre-
gating non important edit operations and graph states. A recent in-
teraction ranking model [FCM 18] provides a good starting point.

(© 2022 The Author(s)
Eurographics Proceedings (©) 2022 The Eurographics Association.



P. Berger & H. Schumann & C. Tominski / Towards Understanding Edit Histories of Multivariate Graphs 77

References

[Bau06] BAUDEL T.: From Information Visualization to Direct Manip-
ulation: Extending a Generic Visualization Framework for the Interac-
tive Editing of Large Datasets. In Proc. ACM UIST (2006), ACM.
doi:10.1145/1166253.1166265. 1,2

[BBDW17] BECK F., BURCH M., DIEHL S., WEISKOPF D.: A Taxon-
omy and Survey of Dynamic Graph Visualization. Computer Graphics
Forum 36,1 (2017). doi1:10.1111/cgf.12791. 1,2

[BCD*10] BEZERIANOS A., CHEVALIER F., DRAGICEVIC P.,
ELMQVIST N., FEKETE J.: GraphDice: A System for Exploring
Multivariate Social Networks. Computer Graphics Forum 29, 3 (2010).
doi:10.1111/3.1467-8659.2009.01687.x.2

[BPF14] BACH B., PIETRIGA E., FEKETE J.-D.: GraphDiaries: An-
imated Transitions andTemporal Navigation for Dynamic Networks.
IEEE TVCG 20,5 (2014). doi:10.1109/TVCG.2013.254.2

[BST19] BERGER P., SCHUMANN H., TOMINSKI C.: Visually Explor-
ing Relations between Structure and Attributes in Multivariate Graphs.
In Proc. IEEE International Conference on Information Visualization
(2019), IEEE. doi1:10.1109/IV.2019.00051. 2

[BST22] BERGER P., SCHUMANN H., TOMINSKI C.: Integrating Vi-
sual Exploration and Direct Editing of Multivariate Graphs. In Inte-
grating Al and Visualisation for Visual Knowledge Discovery. Springer
International Publishing, 2022. (To appear). doi:10.1007/
978-3-030-93119-3_18.1

[BVB*11] BURCH M., VEHLOW C., BECK F., DIEHL S., WEISKOPF
D.: Parallel Edge Splatting for Scalable Dynamic Graph Visualization.
IEEETVCG 17,12 (2011). do1:10.1109/TVCG.2011.226. 2

[CGL20] CUTLER Z., GADHAVE K., LEX A.: Trrack: A library for
provenance-tracking in web-based visualizations. In IEEE VIS - Short
Papers (2020), IEEE. doi:10.1109/VIS47514.2020.00030.2

[DHRL*12] DUNNE C., HENRY RICHE N., LEE B., METOYER R.,
ROBERTSON G.: GraphTrail: Analyzing Large Multivariate, Heteroge-
neous Networks while Supporting Exploration History. In Proc. ACM
CHI (2012). doi1:10.1145/2207676.2208293. 2

[EGST16] EICHNER C., GLADISCH S., SCHUMANN H., TOMINSKI C.:
Direct Visual Editing of Node Attributes in Graphs. Informatics 3, 4
(2016). doi:10.3390/informatics3040017.1,2,4

[FCM18] FUJIWARA T., CRNOVRSANIN T., MA K.-L.: Concise prove-
nance of interactive network analysis. Visual Informatics 2, 4 (2018).
doi:10.1016/j.visinf.2018.12.002.2,4

[FTO4] FRISHMAN Y., TAL A.: Dynamic drawing of clustered graphs.
In IEEE InfoVIS (2004). do1:10.1109/INFVIS.2004.18. 2

[GSE*14] GLADISCH S., SCHUMANN H., ERNST M., FULLEN G.,
ToOMINSKI C.: Semi-Automatic Editing of Graphs with Customized
Layouts. Computer Graphics Forum 33, 3 (2014). doi:10.1111/
cgf.12394.1,2,3

[GSLT15] GLADISCH S., SCHUMANN H., LUBOSCHIK M., TOMINSKI
C.: Toward using Matrix Visualizations for Graph Editing. In Poster at
IEEE Conference on Information Visualization (2015). 2

[HBS*21] HORAK T., BERGER P., SCHUMANN H., DACHSELT R.,
TOMINSKI C.: Responsive Matrix Cells: A Focus+Context Approach for
Exploring and Editing Multivariate Graphs. IEEE TVCG 27, 2 (2021).
doi:10.1109/TVCG.2020.3030371.1,2,3,4

[HBW14] HLAWATSCH M., BURCH M., WEISKOPF D.: Visual Adja-
cency Lists for Dynamic Graphs. IEEE TVCG 20, 11 (2014). doi:
10.1109/TVCG.2014.2322594.2

[HMSAO8] HEER J., MACKINLAY J., STOLTE C., AGRAWALA M.:
Graphical Histories for Visualization: Supporting Analysis, Communi-
cation, and Evaluation. IEEE TVCG 14, 6 (2008). doi:10.1109/
TVCG.2008.137.2

[JE13] JAVED W., ELMQVIST N.: ExPlates: Spatializing Interactive
Analysis to Scaffold Visual Exploration. Computer Graphics Forum 32,
3pt4 (2013). doi:https://doi.org/10.1111/cgf.12131.2

(© 2022 The Author(s)
Eurographics Proceedings (© 2022 The Eurographics Association.

[KHP*11] KANDEL S., HEER J., PLAISANT C., KENNEDY J., VAN
HaMm F., RICHE N. H., WEAVER C., LEE B., BRODBECK D., BUONO
P.: Research Directions in Data Wrangling: Visualizations and Transfor-
mations for Usable and Credible Data. Information Visualization 10, 4
(2011). doi:10.1177/1473871611415994. 1

[KLS*17] KERZNER E., LEX A., SIGULINSKY C., URNESS T., JONES
B., MARC R., MEYER M.: Graffinity: Visualizing Connectivity in Large
Graphs. Computer Graphics Forum 36, 3 (2017). doi:10.1111/
cgf.13184.2

[KNS04] KREUSELER M., NOCKE T., SCHUMANN H.: A History
Mechanism for Visual Data Mining. In IEEE InfoVIS (2004). doi:
10.1109/INFVIS.2004.2.2

[KPW14] KERREN A., PURCHASE H. C., WARD M. O. (Eds.):.
Multivariate Network Visualization (2014), vol. 8380 of Lec-
ture Notes in Computer Science, Springer. doi:10.1007/
978-3-319-06793-3.2

[MB19] MaAIJOR T., BASOLE R. C.: Graphicle: Exploring Units, Net-
works, and Context in a Blended Visualization Approach. [EEE TVCG
25,1(2019). doi:10.1109/tvcg.2018.2865151. 2

[NMSL19] NOBRE C., MEYER M., STREIT M., LEX A.: The State of
the Art in Visualizing Multivariate Networks. Computer Graphics Forum
38,3(2019). doi1:10.1111/cgf.13728.2

[NSL19] NOBRE C., STREIT M., LEX A.: Juniper: A Tree+Table Ap-
proach to Multivariate Graph Visualization. IEEE TVCG 25, 1 (2019).
doi:10.1109/tvcg.2018.2865149.2

[RESC15] RAGAN E. D., ENDERT A., SANYAL J., CHEN J.: Charac-
terizing Provenance in Visualization and Data Analysis: An Organiza-
tional Framework of Provenance Types and Purposes. [EEE TVCG 22,
1(2015). doi:10.1109/TVCG.2015.2467551. 1,2

[RM14] RUFIANGE S., MELANCON G.: AniMatrix: A Matrix-Based
Visualization of Software Evolution. In I[EEE Working Conf. on Software
Visualization (2014). doi:10.1109/VISSOFT.2014.30. 2

[SAO6] SHNEIDERMAN B., ARIS A.: Network Visualization by Seman-
tic Substrates. IEEE TVCG 12, 5 (2006). doi:10.1109/TVCG.
2006.166.2

[SGT*18] SCHARM M., GEBHARDT T., TOURE V., BAGNACANI A.,
SALEHZADEH-YAZDI A., WOLKENHAUER O., WALTEMATH D.: Evo-
lution of computational models in biomodels database and the phys-
iome model repository. BMC Systems Biology 12, 1 (2018). doi:
10.1186/s12918-018-0553-2.2

[WTO08] WU Y., TAKATSUKA M.: Visualizing Multivariate Networks:
A Hybrid Approach. In Proc. IEEE Pacific VIS (2008), IEEE. doi:
10.1109/pacificvis.2008.4475480.2

[WZD*21] WENG D., ZHENG C., DENG Z., MA M., BAO J., ZHENG
Y., XU M., WU Y.: Towards Better Bus Networks: A Visual Analytics
Approach. IEEE TVCG 27,2 (2021). doi:10.1109/TVCG.2020.
3030458. 1

[XOW*20] Xu K., OTTLEY A., WALCHSHOFER C., STREIT M.,
CHANG R., WENSKOVITCH J.: Survey on the Analysis of User In-
teractions and Visualization Provenance. Computer Graphics Forum 39,
3(2020). doi:10.1111/cgf.14035. 1,2

[YDK*18] YOGHOURDIJIAN V., DWYER T., KLEIN K., MARRIOTT K.,
WYBROW M.: Graph Thumbnails : Identifying and Comparing Multi-
ple Graphs at a Glance. [EEE TVCG 24, 12 (2018). doi:10.1109/
TVCG.2018.2790961. 2,3

[ZK15] ZIMMER B., KERREN A.: Displaying User Behavior in the Col-
laborative Graph Visualization System OnGraX. In Graph Drawing
and Network Visualization (2015), Di Giacomo E., Lubiw A., (Eds.),
Springer International Publishing. 2

[ZK17] ZIMMER B., KERREN A.: OnGraX: A Web-Based System for
the Collaborative Visual Analysis of Graphs. Journal of Graph Algo-
rithms and Applications 21, 1 (2017). doi:10.7155/jgaa.00399.
2


http://dx.doi.org/10.1145/1166253.1166265
http://dx.doi.org/10.1111/cgf.12791
http://dx.doi.org/10.1111/j.1467-8659.2009.01687.x
http://dx.doi.org/10.1109/TVCG.2013.254
http://dx.doi.org/10.1109/IV.2019.00051
http://dx.doi.org/10.1007/978-3-030-93119-3_18
http://dx.doi.org/10.1007/978-3-030-93119-3_18
http://dx.doi.org/10.1109/TVCG.2011.226
http://dx.doi.org/10.1109/VIS47514.2020.00030
http://dx.doi.org/10.1145/2207676.2208293
http://dx.doi.org/10.3390/informatics3040017
http://dx.doi.org/10.1016/j.visinf.2018.12.002
http://dx.doi.org/10.1109/INFVIS.2004.18
http://dx.doi.org/10.1111/cgf.12394
http://dx.doi.org/10.1111/cgf.12394
http://dx.doi.org/10.1109/TVCG.2020.3030371
http://dx.doi.org/10.1109/TVCG.2014.2322594
http://dx.doi.org/10.1109/TVCG.2014.2322594
http://dx.doi.org/10.1109/TVCG.2008.137
http://dx.doi.org/10.1109/TVCG.2008.137
http://dx.doi.org/https://doi.org/10.1111/cgf.12131
http://dx.doi.org/10.1177/1473871611415994
http://dx.doi.org/10.1111/cgf.13184
http://dx.doi.org/10.1111/cgf.13184
http://dx.doi.org/10.1109/INFVIS.2004.2
http://dx.doi.org/10.1109/INFVIS.2004.2
http://dx.doi.org/10.1007/978-3-319-06793-3
http://dx.doi.org/10.1007/978-3-319-06793-3
http://dx.doi.org/10.1109/tvcg.2018.2865151
http://dx.doi.org/10.1111/cgf.13728
http://dx.doi.org/10.1109/tvcg.2018.2865149
http://dx.doi.org/10.1109/TVCG.2015.2467551
http://dx.doi.org/10.1109/VISSOFT.2014.30
http://dx.doi.org/10.1109/TVCG.2006.166
http://dx.doi.org/10.1109/TVCG.2006.166
http://dx.doi.org/10.1186/s12918-018-0553-2
http://dx.doi.org/10.1186/s12918-018-0553-2
http://dx.doi.org/10.1109/pacificvis.2008.4475480
http://dx.doi.org/10.1109/pacificvis.2008.4475480
http://dx.doi.org/10.1109/TVCG.2020.3030458
http://dx.doi.org/10.1109/TVCG.2020.3030458
http://dx.doi.org/10.1111/cgf.14035
http://dx.doi.org/10.1109/TVCG.2018.2790961
http://dx.doi.org/10.1109/TVCG.2018.2790961
http://dx.doi.org/10.7155/jgaa.00399

