
EuroVis Workshop on Visual Analytics (2022)
M. Angelini and J. Bernard (Editors)

APPENDIX
Multivariate Time Series Retrieval with Symbolic Aggregate
Approximation, Regular Expression, and Query Expansion

Y. Yu1,2 , T. Becker1,2 and M. Behrisch1

1Utrecht University, Netherlands
2IAV GmbH Ingenieurgesellschaft Auto und Verkehr, Germany

Abstract
We present SAXRegEx, a method for pattern search in multivariate time series in the presence of various distortions, such as
duration variation, warping, and time delay between signals. For example, in the automotive industry, calibration engineers
spontaneously search for event-induced patterns in fresh measurements under time pressure. Current methods do not sufficiently
address duration (horizontal along the time axis) scaling and inter-track time delay. One reason is that it can be overwhelmingly
complex to consider scaling and warping jointly and analyze temporal dynamics and attribute interrelation simultaneously.
SAXRegEx meets this challenge with a novel symbolic representation modeling adapted to handle time series with multiple
tracks. We employ methods from text retrieval, i.e., regular expression matching, to perform a pattern retrieval and develop a
novel query expansion algorithm to deal flexibly with pattern distortions. Experiments show the effectiveness of our approach,
especially in the presence of such distortions, and its efficiency surpassing the state-of-the-art methods. While we design the
method primarily for automotive data, it is well transferable to other domains.

CCS Concepts
• Mathematics of computing → Time series analysis; • Information systems → Query representation;
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Appendix A: Quary-Aware Symbolic Aggregate approXimation

Symbolic Aggregate approXimation (SAX) is introduced in [LKLC03] and extensively explained in [LKWL07].

Motivation of the chosen methods: We have chosen a symbolic encoding for time series to enable text retrieval techniques, in this case
regex. As a digression of this section, we choose regex, because it naturally handles length-invariant search, among many possible tricks,
that distortion-invariant pattern search in time series may benefit from. Furthermore, it is potentially very fast, because it stops similarity
matching immediately when the pattern partially mismatches. On the other hand, regex is a well established technique for simple and robust
implementation. Finally, SAXRegEx may benefit from its future independent development. Back to SAX, we have chosen this technique,
not only because it is one of the state-of-the-art symbolic representation for time series, but also because of its two properties. On one hand,
the symbols in the alphabet used by SAX have an order, allowing a tolerance band for the subsequent regex search. On the other hand, SAX’s
numerocity reduction property inspired us to the query expansion for horizontally invariant search.

SAX’s pipeline: The original SAX contains two major steps. In the first step, it performs Piecewise Aggregate Approximation (PAA),
merging temporal consecutive time steps into one by calculating their average. In the second step, it quantifies the values with quantiles as
breakpoints and map the values within a range bounded by the breakpoints to a symbol.

Uncommon practice in our implementation: While it’s common practice to conduct SAX on the whole time series dataset, we fit SAX (bin
size horizontally along the time axis and breakpoints along the value axis) with the query, and then conduct SAX on the time series dataset
with the fitted parameters. We make such an alternation, because we have no clue about the appropriate bin size and breakpoints. Especially
when the patterns in the time series are quite small either in terms of length or value range. This is exactly the case in our APST dataset. In
fact, similar practice is proposed for Locality-Sensitive Hashing (LSH) [HFZ∗15, CLL∗19], where the hash tables are based on the query,
not the dataset. They call the new version query-aware LSH and the previous one query-oblivious LSH. Though it requires repeating hashing
every time the query changes, this technique significantly improves accuracy.

Bin size for aggregation along the time axis: For aggregation horizontally along the time axis, we do not set the bin size directly. Instead,
we set the length of the SAX-encoded query to 20, which is enough for all our datasets. The bin size is inferred from the original query length
and the desired query length. This arrangement aims to have some control over the regex length, because we find empirically that our regex
does not scale well with its length (this drawback also somehow limits the number of tracks). A scalability test is desired as future work.

Breakpoints for discretization: The original SAX assumes normal distribution of the values in the tracks. Based on this assumption, it
calculates quantiles to quantify the values and categorize them into symbols, so that each symbol has approximately the same number of
values / time steps / data points. This helps zooming in on the value ranges where the values concentrate. The values in the tracks in our
datasets are clearly not normally distributed. Therefore, we calculate the quantiles based on the true value distribution in each track. Again,
we do not calculate the value distribution based on the whole time series dataset but on the query. Because we want sufficient number of
symbols to distinguish values in the desired patterns.

Efficiency concern regarding our uncommon practice: The query-aware setting may raise concerns on its efficiency. In the speed bench-
mark, the execution time is end-to-end, including SAX’s execution time. Actually, SAX’s execution time is negligible compared with regex’s
search time. Nonetheless, we need to seperate preprocessing time and search time in future work.
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Appendix B: Datasets

Dataset Files Tracks Length (time
stamps)

Sampling
rate (Hz)

HDF5
volume
(MB)

Pattern
length range

(s)

Pattern
length
ratio

Domain

APST 6 1 1000 - 40000 10 0.04 - 1.6 3.17 - 12.21 3.8 automotive
Cable Cutter 1 1 100000 12 1.6 1.25 - 10.08 8.1 manufacture
Deep Valve 1 1 100000 100 1.6 0.5 - 4 8 automotive
EEG Eye State 1 4* 14980 128 1.7 0.4 - 20 50 medicine
Filling Prediction 1 1 61226 10 1 5 - 8 1.6 automotive
Variable Displacement 8 2 9119-108457 ∼ 2000 0.2 - 2.5 0.05 - 0.12 2.4 automotive

CAN 1 1 1 5100 107 0.08 5×10−5−
9×10−5 1.8 automotive

CAN 2 1 2 2700 107 0.07 ∼ 3×10−5 ∼ 1 automotive

Table 1: Metadata of all Datasets

APST dataset: The APST dataset focues on the relative air fuel ratio in an Otto motor from the engine control unit. Unfortunately, the
dataset is proprietary and cannot be published. Moreover, the full name and detailed background are unknown to us. Engineers search for a
“w”-shaped pattern in the data. The ground truth labels comes from a flag signal, also from the engine control unit. The patterns are very tiny
in terms of both time span and value range.

Cable cutter dataset: The cable cutter dataset contains the simulated power consumption of a cable cutting machine. The engineers want to
find time intervals corresponding to cutting a cable. The cutting process undergoes seven phases. They form a wave of four plateaus and three
valleys. Because the cables length, thickness and the manual operation change, the lengths of the four plateaus and the space between them
are inconstant and the height of the plateaus also varies from labels to labels. Because the data are simulated, it is easy to generate ground
truth labels.

Deep valve dataset: The deep valve dataset records the current through a solenoid valve. The query captures a complete operating cycle
of the valve, which again consists of four phases. The pattern starts with a peak when the valve begins to move; It follows a “J”-like jump
corresponding to the period when the valve moves until the opening reaches maximum; A subsequent linear phase indicates the constant
operating point with the maximum opening. The length of the operating cycle varies greatly.

EEG eye state dataset: EEG stands for electroencephalogram and measures brain waves with sensors mounted around the head. The
EEG eye state dataset comes from from one continuous EEG measurement with the Emotiv EEG Neuroheadset. During measurement,
participants’ eye state (closed or open) was detected via a camera. The eye state at each video frame is labelled. Please refer to https:
//archive.ics.uci.edu/ml/datasets/EEG+Eye+State for more information. The patterns are very fuzzy and horizontally
extremely scaled. The typical task for this dataset is classification for each time step. As far as we known, this is the first time that this dataset
is used for time series retrieval. The original data have 14 tracks plus a track for ground truth labels. We have selected four tracks manually,
where the patterns are more distinguishable than in the other tracks, which significantly improve the performance compared to search directly
in the 14 tracks.

Filling prediction dataset: Similar as the APST dataset, the filling prediction dataset tracks the relative air fuel ratio predicted by the engine
control unit in a test auto It is also proprietary, cannot be published and has backgrounds unknown to us. The given query features abrupt
change near the boundaries of the pattern. The major part between the boundaries remains stationary. The patterns hide well in the signal and
there are some confusing segments. The data is manually labelled by a domain expert.

Variable displacement dataset: The variable displacement dataset is derived from the rotational speed of the engine recorded by the engine
control unit. There are two tracks in the data. They corresponds to a specific component of the rotational speed after decomposition with a
dedicated method from signal processing. The query corresponds to the transition from the operation with half of the cylinders to operation
with all cylinders in the engine. The patterns accompany large vibration and the engineer wants to suppress the vibration to improve comfort.
The data look like sound waves fluctuating all the time with a changing amplitude. Unfortunately, the dataset is proprietary and cannot be
published.

CAN 1 and CAN 2 dataset: The CAN 1 and CAN 2 datasets are synthesized CAN bus data. CAN bus data keep track of the communication
of the components in an automobile. Our engineers continuously want to find certain events spontaneously. We are not allowed to publish
the original data, but tries to reconstruct some cases that we are interested in. Because the two files have different characteristics and queries,
we treat them as two seperate datasets.

The plots of all publishable datasets can be found in Appendix D.
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Appendix C: Experiment Setup

Hardware and Operating System

We conduct all experiments locally on the same laptop HP EliteBook 850 G5 with

• Processor: Intel® Core™ i7-8650U CPU @ 1.90GHz 2.11GHz
• Memory: 16GB
• Storage: 1TB HDD
• Operating system: 64-bit Windows 10 Enterprise

Method Implementation

The code is proprietary and cannot be open-sourced.

• Correlation: our own implementation in python float(numpy.dot(*normalize(np.vstack((seq_1, seq_2)) + bias))),
where seq_1 and seq_2 are two time series segments and bias is a small term to tackle constant segments.
• Dynamic Time Warping (DTW): dtw.dtw(seq_1, seq_2, dist_method="sqeuclidean", step_pattern="symmetric1",
distance_only=True).distance with dtw-python from https://dynamictimewarping.github.io/python/.
• Mueen’s Algorithm for Similarity Search (MASS): from https://github.com/matrix-profile-foundation/mass-ts.

We have used mass_ts.mass2(ts, query) to calculate the distance profile. GPU support is deactivated.
• Symbolic Aggregate approXimation (SAX): our own implementation. The authentic SAX assumes that the values in the time series are

normally distributed. Based on this assumption, it calculates quantiles to discretize the values. Our data are not normally distributed.
Therefore, we calculate the genuine value distribution then the quantiles accordingly. Furthermore, we fit the SAX (estimate distribution
and calculate quantiles) with the query instead of the time series in the database, which significantly improves the accuracy, because
sometimes, the query has a much smaller value range as the time series in the database, as in APST. The cardinality is alwary set to 10,
also for SAXRegEx.
• Regex: regex.compile(query).finditer(time_series) from https://github.com/mrabarnett/mrab-regex.

The parameter overlapped can be set to True to find overlapping patterns.

Evaluation Setting

IoU thresholds and similarity thresholds: This metric mean Average Precision (mAP) requires a threshold for Intersection over Union
(IoU) between a predicted interval and the closest ground truth label, in order to judge whether the prediction is a true positive or
a false positive. We chose 30% and 50% as the IoU-threshold, denoted as mAP30 and mAP50, respectively. This is more lenient
than in computer vision. For example, the Pascal competition uses 50% as the IoU-threshold. The COCO competition uses a range of
[0.5,0.55,0.60,0.65,0.70,0.85,0.90,0.95] and calculates the mean over all the eight thresholds. However, we found a looser IoU-threshold
better suits the time series cases, because the degree of overlapping between predictions and ground truth labels in time series cases are
generally smaller than in the computer vision cases. As for the other metrics, which formulate the problem as binary classification of each
time step (inside or outside a target pattern), we calculate them with the (similarity) threshold that produces the best F1 score.

Distance profile to similarity profile: Instead of similarity, DTW, Euclidean Distance (ED) and SAX’ distance measure calculates distance.
We invert the distance profile and normalize it. For evaluation, it is not the absolute value of the similarity that matters, rather the ranking
of similarities. Hence, any manipulation on the similarity profile that does not change the ranking of similarity for each time step does not
change the metrics. We even scale the similarity profile heterogeneously so that the top hits stand out.

Degeneration of the predicted intervals with SAXRegEx: As shown in Appendix D, SAXRegEx can locate varied intervals in different
tracks within a predicted pattern. Namely, rather than starting and ending at the same time, the shape in each track can have different starting
and ending time. For a consistent accuracy benchamrk with other methods, we use the earliest starting time and the latest ending time within
a pattern as the predicted interval for SAXRegEx. To find horizontally scaled patterns, we use a set of eight sliding windows of exponentially
increasing window lengths to deal with the scaling problem for the benchmark methods.

SAXRegEx’s pseudo-similarity: SAXRegEx does not calculate similarity However, mAP requires a confidence for each prediction. To
solve this problem, we calculate pseudo-similarity for the predicted intervals. The idea is, we run SAXRegEx with a range of tolerance
band widths (the allowed number of symbol deviations). Each prediction is found with a tolerance band. The narrow the band, the high the
similarity. We inverted and normalized the band width as the pseudo-similarity. As mentioned above, the absolute similarity value is not
important for the metrics, as long as the similarity ranking between the predictions retains.

Resolution for fair comparison: SAX’s first step PAA aggregates several time stamps, calculates their average and merges them into one,
which will be transformed into one symbol in subsequent steps. For SAXRegEx, the query of a certain length is down-scaled by SAX to 20
symbols (which is sufficient for all our datasets), because regex does not scale well with the pattern length. Accordingly, the time series is
down-scaled with the same bin size horizontally along the time axis with SAX. This reduces the data volume and accelerates the subsequent
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processing. To ensure a fair speed comparison, we conduct PAA with the same resolution for other benchmark methods to accelerate them.
This only affects the speed benchmark. Whereas in the accuracy comparison, we do not conduct PAA for the benchmark methods. Rather,
we use the finest possible resolution to achieve the highest possible accuracy for the benchmark methods.

© 2022 The Author(s)
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Appendix D: Visual Inspection of the Datasets and Predictions

We keep the visual inspection of all methods for all publishable datasets in this appendix.

Each figure corresponds to a dataset, containing the result of all methods. For each method, every track in the query is plotted on the left
and every track in the time series, where to search for the query, on the right. The blue curves stands for the original data.

The benchmark methods calculate similarity profiles and they are delineated with the gray curves. The similarity profile at a time step for
a track records the similarity of a potential predicted interval starting at the time step. The length of the interval corresponds to the sliding
window size. A range of sliding windows with increasing window sizes is used. The similarity profile keeps records of the window size with
the highest similarity for a time step. The similarity profiles are averaged over all tracks and the merged similarity is shown in a separate
sub-figure under all time series tracks.

The user can tune a threshold marked as red lines in the plots. If a similarity peak reaches the threshold, a predicted interval denoted as
a green area is found. We conduct non-max-suppression to remove intervals with large overlapping. SAXRegEx works differently as the
benchmarks. It does not have similarity profiles, accept time-shifted patterns as the query and can find such patterns in the time series.
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Figure D.1: Visual inspection of all methods on the deep valve dataset (excerpt).
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Figure D.2: Visual inspection of all methods on the cable cutter dataset (excerpt).
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Figure D.3: Visual inspection of all methods on the EEG eye State dataset (part 1).
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Figure D.4: Visual inspection of all methods on the EEG eye State dataset (part 2).
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Figure D.5: Visual inspection of all methods on the CAN 1 dataset.
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Figure D.6: Visual inspection of all methods on the CAN 2 dataset.
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Appendix E: Complete Accuracy Benchmark

x Accuracy
Balanced

accuracy
Precision Recall F1 score mAP30 mAP50

Correlation

DTW

ED (MASS)

SAX

SAXRegEx

Correlation

DTW

ED (MASS)

SAX

SAXRegEx

Correlation

DTW

ED (MASS)

SAX

SAXRegEx

Correlation

DTW

ED (MASS)

SAX

SAXRegEx

Correlation

DTW

ED (MASS)

SAX

SAXRegEx

Correlation

DTW

ED (MASS)

SAX

SAXRegEx

Correlation

DTW

ED (MASS)

SAX

SAXRegEx

Correlation

DTW

ED (MASS)

SAX

SAXRegEx

0.99 ± 0.01 0.98 ± 0.03 0.80 ± 0.16 0.97 ± 0.07 0.88 ± 0.12 0.89 ± 0.25 0.89 ± 0.25

0.98 ± 0.02 0.98 ± 0.03 0.65 ± 0.22 0.98 ± 0.04 0.76 ± 0.19 0.87 ± 0.30 0.87 ± 0.30

1.00 ± 0.01 0.98 ± 0.03 0.87 ± 0.07 0.97 ± 0.07 0.92 ± 0.04 1.00 ± 0.00 1.00 ± 0.00

0.99 ± 0.02 0.97 ± 0.03 0.57 ± 0.28 0.96 ± 0.07 0.69 ± 0.23 0.57 ± 0.33 0.57 ± 0.33

0.88 ± 0.27 0.92 ± 0.14 0.47 ± 0.37 0.95 ± 0.10 0.55 ± 0.36 0.64 ± 0.39 0.64 ± 0.39

0.98 0.93 0.79 0.86 0.82 0.89 0.56

0.94 0.96 0.48 0.98 0.64 0.84 0.19

0.93 0.74 0.36 0.52 0.43 0.27 0.18

0.97 0.85 0.74 0.71 0.72 0.69 0.31

0.96 0.92 0.55 0.87 0.67 0.89 0.55

0.89 0.73 0.88 0.47 0.61 0.82 0.29

0.79 0.85 0.46 0.94 0.62 0.46 0.19

0.90 0.76 0.88 0.53 0.67 0.85 0.28

0.96 0.95 0.87 0.93 0.90 0.73 0.66

0.88 0.86 0.62 0.84 0.71 0.83 0.50

0.79 0.78 0.76 0.77 0.76 0.57 0.40

0.80 0.80 0.73 0.87 0.79 0.57 0.43

0.69 0.70 0.63 0.77 0.69 0.58 0.36

0.65 0.66 0.58 0.80 0.67 0.40 0.37

0.68 0.70 0.59 0.92 0.72 0.62 0.62

0.97 0.80 0.91 0.61 0.73 0.88 0.88

0.95 0.89 0.57 0.82 0.67 0.75 0.75

0.97 0.80 0.91 0.61 0.73 0.84 0.84

0.97 0.92 0.69 0.87 0.77 0.95 0.95

0.90 0.81 0.37 0.72 0.49 0.58 0.47

1.00 ± 0.00 0.96 ± 0.02 0.98 ± 0.01 0.92 ± 0.03 0.95 ± 0.01 0.88 ± 0.33 0.88 ± 0.33

1.00 ± 0.00 0.91 ± 0.05 0.95 ± 0.05 0.82 ± 0.10 0.88 ± 0.07 0.83 ± 0.32 0.81 ± 0.33

1.00 ± 0.00 0.96 ± 0.01 0.97 ± 0.04 0.92 ± 0.03 0.94 ± 0.02 0.87 ± 0.33 0.87 ± 0.33

1.00 ± 0.00 0.95 ± 0.03 0.96 ± 0.03 0.90 ± 0.06 0.93 ± 0.04 0.84 ± 0.33 0.84 ± 0.33

1.00 ± 0.00 0.95 ± 0.03 0.96 ± 0.06 0.89 ± 0.07 0.92 ± 0.05 0.83 ± 0.32 0.83 ± 0.32

0.73 0.70 0.68 0.93 0.79 0.79 0.75

0.95 0.95 0.93 1.00 0.96 1.00 1.00

0.73 0.70 0.68 0.93 0.79 0.90 0.78

0.76 0.75 0.74 0.86 0.80 0.90 0.81

0.99 0.99 0.99 0.99 0.99 1.00 1.00

0.88 0.88 0.82 0.99 0.90 0.97 0.97

0.77 0.77 0.80 0.75 0.77 0.89 0.70

0.88 0.89 1.00 0.78 0.87 0.94 0.94

0.81 0.81 0.76 0.93 0.84 0.84 0.84

1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Figure E.7: Complete accuracy benchmark: best performance of all methods on all datasets. The APST dataset and the variable displace-
ment dataset have multiple files. The evaluation metrics are calculated individually for each file. Then, we average them and calculate their
standard deviation. Best F1-score, mAP30 and mAP50 among five methods are highlighted bold and red. The results show that each method
suits different datasets, or different datasets favor different methods. No method outperforms the other consistently. The proposed method
SAXRegEx outperforms the other, when the patterns are strongly heterogeneously horizontally scaled or have inter-track time shifts, as in
the last two cases.
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Appendix F: Complete Speed Benchmark

APST
Cable

Cutter

Deep 

Valve

EEG Eye

State

Filling 

Prediction

Variable

Displ.
CAN 1 CAN 2

DTW

Correlation

SAX

ED (MASS)

SAXRegEx

24.54±2.29 43.56±3.39 9.98±0.37 2.00±0.57 1.36±0.07 94.66±5.25 0.320 ± 0.031 0.410 ± 0.028

27.90±3.25 55.09±4.11 12.35±1.24 3.61±0.38 1.41±0.03 107.44±7.57 0.644 ± 0.636 0.542 ± 0.288

2.59±0.21 7.89±1.83 1.26±0.04 0.20±0.01 0.23±0.01 8.28±0.83 0.222 ± 0.016 0.282 ± 0.006

15.05±0.87 27.18±1.48 6.19±0.29 1.23±0.30 0.83±0.06 48.36±2.36 0.062 ± 0.003 0.074 ± 0.005

0.65±0.03 4.39±0.55 0.22±0.01 0.05±0.00 0.04±0.01 1.36±0.16 0.022 ± 0.003 0.022 ± 0.007

Figure F.8: Complete speed benchmark: unit sec. We repeat the same measurement five times and recorded the their mean and standard
deviation. SAXRegEx outperforms the other methods for all datasets significantly.
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Figure F.9: Speed benchmark in factor: The mean execution time of each method is divided from that of DTW. SAXRegEx is on average
x50 faster than DTW in our experiments. This figure is derived from Figure F.8

We use SAX to down-sample the query to 20 symbols and down-sample the time series with the same bin size. To ensure a fair comparison,
we conduct PAA with the same resolution for other methods during the speed benchmark.

The speed ranking of correlation and DTW is inconsistent. Because the synthesized datasets CAN 1 and CAN 2 are fairly small. Therefore,
the searching time is not dominant during the processing. The used DTW library seems to be better implemented and outperforms the
correlation implementation. However, when the query length grows, its relatively inferior scalability (O(dq2lk)) compared with that of
correlation (O(dqlk)) starts to reveal itself, where d stands for the number of tracks (dimensions), q the query length, l the length of the time
series, where to search for the query and k the number of sliding window kernels of different size for longitudinally scaled patterns. Due
to this reason, we exclude the datasets CAN 1 and CAN 2 for speed benchmark, where the result on all other datasets listed in Table 1 are
averaged.

By the way, SAX and ED also have the complexity O(dqlk) as correlation. The scalability of SAXRegEx is dependent on the regex
search engine. We cannot express it simply but empirically, it does not scale well. Thus, we always down-sample the query to 20 symbols
horizontally along the time axis with SAX, which is more than enough for all our datasets. As mentioned above, the effect is compensated
with PAA.
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