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Figure 1: Pipeline of the proposed method: 1) Stringify the time series to allow text retrieval methods; 2) zipping tracks to enable multivariate
retrieval; 3) extract regex from the stringified query; 4) expand the query to tackle distortions; 5) search with regex engine.

Abstract

We present SAXRegEx, a method for pattern search in multivariate time series in the presence of various distortions, such as
duration variation, warping, and time delay between signals. For example, in the automotive industry, calibration engineers
spontaneously search for event-induced patterns in fresh measurements under time pressure. Current methods do not sufficiently
address duration (horizontal along the time axis) scaling and inter-track time delay. One reason is that it can be overwhelmingly
complex to consider scaling and warping jointly and analyze temporal dynamics and attribute interrelation simultaneously.
SAXRegEx meets this challenge with a novel symbolic representation modeling adapted to handle time series with multiple
tracks. We employ methods from text retrieval, i.e., regular expression matching, to perform a pattern retrieval and develop a
novel query expansion algorithm to deal flexibly with pattern distortions. Experiments show the effectiveness of our approach,
especially in the presence of such distortions, and its efficiency surpassing the state-of-the-art methods. While we design the
method primarily for automotive data, it is well transferable to other domains.

CCS Concepts

* Mathematics of computing — Time series analysis; * Information systems — Query representation;

1. Introduction

When a car starts, a series of events are recorded for analysis and
control. These event sequences are used in various use cases. En-
gine engineers await a signal to pinpoint the best entry point of
their novel algorithm for a smoother air-fuel ratio control. Trans-
mission engineers trace gear change intervals to analyze the mo-
ments on different shafts for less traction loss. Noise Vibration
Harshness (NVH) engineers hunt for periods when some cylinders
are deactivated or reactivated for cars with variable displacement to
study the abrupt vibration during these periods. These use cases are
all backed up by techniques for pattern search in time series.

Locating sub-sequences in time series similar to the given query
is a frequent prerequisite for further data processing. Univariate re-
trieval with little distortion is efficiently solved with numerous time
series indexing techniques [AJ02, GDK*21]. Univariate case with
certain distortion types, especially time shifts and sometimes hori-
zontal scaling along the time axis, is also addressed [Ke097,JL.18a,
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SSA*18]. Recently, multivariate cases have received increasing at-
tention [MJE15,LL18]. Multivariate distortion-invariant time series
retrieval, however, remains largely untouched.

Our target signals constantly vary in duration and are often dis-
tributed in several tracks with significant inter-track time delay.
Horizontal length scaling and time shifts within a track can be re-
garded as heterogeneous horizontal resampling. The dummy data in
Figure 2 illustrate the distortions. These distortions are also likely
to plague the patterns in data from other domains. Heterogeneous
horizontal scaling is hard to capture, due to the de facto prepro-
cessing step with a sliding window, usually assuming a fixed pat-
tern length silently. Inter-track time shifts are even more challeng-
ing due to the complexity during simultaneous consideration of the
temporal dynamics and the interrelation between attributes.

We propose an easy-to-implement method, SAXRegEx, based
on symbolic representation to enable text retrieval methods and reg-
ular expressions as our search engine. Query expansion is designed
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Figure 2: Distorted patterns: the query on the left is searched for
in the multivariate time series on the right. Target patterns in the
time series exhibit distortion in various forms.

to deal with the mentioned distortions. Our method shows com-
parable accuracy to state-of-the-art techniques on datasets without
these distortions and better performance in multivariate datasets
with mentioned distortions. Additionally, SAXRegEx outperforms
the state-of-the-art in terms of speed.

2. Related Work

Research on time series retrieval mainly focused on two directions:
first, novel similarity measures between two time series that better
describe the notion of similarity (accuracy) [SSA*18,JL18a]; Sec-
ond, indexing techniques focusing on efficiency [LS95, GDK*21,
PFP21]. Usually, sliding windows are assumed for preprocessing.
Our work breaks the convention by employing neither a sliding
window approach nor an explicit measure of similarity.

Besides random noise, patterns in the time series can have var-
ious distortion forms. Horizontal translation along the time axis
is trivial; horizontal scaling is only addressed in a few works,
such as [Keo97, MA18]; vertical translation and scaling on the
value/amplitude axis is often handled by normalizing time series
windows [LPH*20, GDK*21]. Warping is captured by a variety
of “elastic” distances [CN04, AVG13], especially Dynamic Time
Warping (DTW) [BC94,MJE15,JL18a]. In multivariate cases, most
methods handle the temporal dynamics and interrelation between
tracks independently, assuming that the tracks are synchronized.
For instance, DTWj calculates distance profiles for each track
individually and merges them subsequently [MJE15]; Locality-
Sensitive Hashing (LSH) merges tracks followed by univariate pro-
cessing [CLL*19]. All these approaches assume that the pattern
is synchronized in all tracks. Driven by our domain problems, we
target this problem without this assumption and scan the temporal
dynamics with inter-track relation jointly.

Recently, machine learning penetrates time series re-
trieval [JL18b, LXZ19, LPH*20]. They do not suit, however,
highly dynamic or user-driven retrieval cases, where the queries
and the datasets change rapidly. In our case, engineers start the
search spontaneously and wish an immediate answer.

Regarding accuracy, it is accepted that no similarity measure
accounts for the human notion of similarity [MM16]; therefore,
different datasets favor different similarity measures. Some works
propose an active learning strategy to adapt the similarity mea-
sure [KP98, LPH*20, YKBB21]. The extensive benchmark in
[BLB*17] shows that DTW enjoys top ranking accuracy among 20
methods for time series classification. As for speed, Mueen’s Algo-
rithm for Similarity Search (MASS) is so far the fastest similarity
search algorithm [YZU*16, MAA*21]. We, consequently, include
both for benchmarking SAXRegEx (Section 4).

SAXRegEx’s basic concept, regex-based search in symbolic-
encoded time series, resembles SSTS [JDDH19]. In comparison,
SAXRegEx’s contributions lie in the ability to handle multivariate
data and various distortions.

3. Method

SAXRegEx consists of five steps illustrated in Figure 3. First, it
encodes with SAX each track in the query and in the time series.
It reduces data volume, smooths curves, and enables methods for
text retrieval (details in Appendix A). Next, SAXRegEx zips tracks
in the query and in the time series. This step enables simultane-
ous processing of multiple tracks through a single regex. Here, the
word “zip” does not refer to the lossless compression but rather
step-wise merging of sequences. In the third step, repetitive symbol
groups are merged through regex quantifiers, which exploits SAX’s
"numerosity reduction” property [LKWLO7]. The penultimate step
conducts query expansion to cope with distortions. As shown in
Figure 3, it adds a tolerance band to the query by allowing charac-
ter classes rather than character instances; thereupon, it makes the
query elastic along the time axis by substituting the fixed quantifier
with ranges. Finally, SAXRegEx searches for the query regex in
the time series string and reconstructs the pattern in each track by
a fine regex matching in the predicted intervals. In the following
sections, we describe Step 3 and Step 4 in detail with examples.

3.1. Regex Extraction

The first two steps of our processing pipeline typically leave repeti-
tive symbols in the text sequences. They can be bundled with quan-
tifiers. For instance, the string ACCCCGGGBAAA can be rewritten
as AC{4}G{3}BA{3}. As we will see later, these quantifies also
enable horizontal scaling invariant search.

Generally, regex is meant for exact search instead of “fuzzy”
search like pattern search in time series. It can only match patterns
strictly satisfying the restrictions imposed by the regex. To allow
fuzzy search, we add a tolerance band to the query with charac-
ter classes analogous to the L>° norm. For instance, the previously
encoded query AC{4}G{3}BA{3} can be further augmented as
[A-B] [B-D] {4} [F-H] {3} [A-C] [A-B]{3}. In this exam-
ple, we allow a tolerance band of two symbols.

3.2. Query Expansion

We conduct distortion-specific query expansion to address the nec-
essary retrieval invariances required in our use cases, particularly
heterogeneous horizontal scaling and inter-track time shifts.

For heterogeneous horizontal scaling, we use value ranges rather
than fixed regex quantifiers. Pertaining to our running example,
we can further augment our query to [A-B] {0-2} [B-D]{2-
8} [F-H]{1-6}[A-C]{0-2}[A-B]{1-6}.This modification
captures similar patterns with a half to double duration. Moreover,
it allows different fragments in the pattern to have different scaling
factors, thus capturing complex heterogeneity and warping.

For inter-track time shifts, we use a different alphabet per track
and zip the tracks to a single string. As shown in Figure 3 Step
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Figure 3: Pipeline: 1) convert with SAX each track with a different alphabet to enable text retrieval methods; 2) merge tracks in the query

and in the time series by zipping to process multiple tracks with a single regex, leave wildcards *.

“»

for “gaps” to capture inter-track time

shifts; 3) extract regex from the query string by combining repetitive symbol groups; 4) manipulate the regex with character classes and
quantifiers to deal with distortions; 5) search for the query regex in the time series string and reconstruct the shape in each track.

2, we zip the query while taking time shifts between the shapes
in different tracks into consideration. We can add this flexibility
by introducing the wildcard character “.” for “gaps”. This way, the
query ignores the potentially interfering context in each track and
focuses only on the given shape in the track. As a result, the shape
in a track within the query does not have to span the whole query
length. Note in Figure 3, the term (...) {2, 6}, which captures
the elastic gap between the shapes in Track 3 and in Track 1.

4. Evaluation

We evaluated the accuracy and speed of SAXRegEx with eight
labeled datasets, among which two contain patterns with hetero-
geneous horizontal scaling or inter-track time shifts. We chose
four state-of-the-art methods for our comparative evaluation of
SAXRegEx: 1) correlation: one of the standard similarity mea-
sures; 2) DTW: the most popular elastic distance measure for
time series with “hard-to-beat” accuracy for time series classifica-
tion [BLB*17]; 3) Euclidean Distance (ED): specifically MASS,
the so-far fastest similarity search tool [YZU*16, MAA*21]; 4)
SAX: our baseline time series representation, together with its sim-
ilarity measure [LKWLO7], can be used for similarity search. De-
tails of the benchmark methods are in Appendix C and Appendix D.

All experiments were conducted on a standard laptop running
on 64-bit Windows 10 Enterprise with Intel i17-8650U CPU, 16GB
RAM, and 1TB HDD. Details of the datasets, hardware and soft-
ware setup are in Appendix B and Appendix C, respectively.

4.1. Accuracy Benchmark

We compared the performance of all methods quantitatively with
standard metrics and qualitatively through a visual inspection. Be-
sides the standard metrics accuracy, balanced accuracy, precision,
recall, and F1-score, which regard the problem as the binary clas-
sification for each time step (inside/outside a pattern), we want to
introduce the metric mean Average Precision (mAP) from object
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detection in computer vision from a segment-wise perspective. We
have chosen 30% and 50% as the Intersection over Union (IoU)-
threshold required by this metric. They are denoted mAP30 and
mAP50, respectively. For details, please refer to Appendix C. The
table in Figure 4 (complete version in Appendix E) depicts our
five evaluation metrics for all methods on various datasets. The
result suggests that different data favor different methods and no
method constantly outperforms the other, confirming the finding
in [MM16]. However, SAXRegEx can better capture heteroge-
neous horizontal scaling and inter-track time shifts. We can observe
this specifically on the last two datasets in Figure 4 and Figure E.7.

We have plotted the predictions and ground truth labels with
all methods on all publishable datasets in Appendix D, together
with the description of the plots. Figure 5 shows an example. From
the visual inspection, we can infer pitfalls of the benchmark meth-
ods. Firstly, the benchmark methods spread focus evenly over all
time steps rather than critical transitions (usually large ramps). This
leads to the false positive Prediction 5 with ED, which misses an
upward ramp at the beginning in the first track and a downward
ramp at the end in the second track. Next, the benchmark meth-
ods take the context of the pattern shape in each track into account
(please note the difference between the query for SAXRegEx and
the benchmark methods). Consequently, the search can be misled
by a changing context, as implied by the missing ground truth label
2 for ED and DTW. In this case, the target pattern contains a dis-
tracting plateau in each track. Finally, while DTW well addresses
the time shifts within a track, as proven by the performance on the
CAN 1 dataset in Figure 4 and Figure D.5, it has a hard time when
it comes to time shifts between tracks, as indicated by Prediction 2,
3 and 4 for DTW. In the presence of such distortions, SAXRegEx
outperforms the benchmarks and fulfills our needs.

4.2. Speed Benchmark

We calculated the elapsed time of all methods on all datasets. Every
experiment is repeated five times. The complete result can be found
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Figure 4: Accuracy benchmark: best performance of all methods.
Complete version in Figure E.7. Best F1-score, mnAP30 and mAP50
among five methods are highlighted bold and red. Each method
suits different datasets. The proposed method (denoted as SRe) out-
performs the other, when there are heterogeneous horizontal scal-
ing or inter-track time shifts, as in the last two cases.

in Figure F.§ in the appendix. In Figure F.9, we report on the relative
performance gain compared to DTW.

In short, SAXRegEx is nearly x50 faster than DTW and x4.6
faster than MASS, the so-far fastest similarity search tool for time
series retrieval. We attribute this speed boost to two reasons. First,
SAXRegEx naturally captures horizontally scaled patterns. In con-
trast, the benchmarking methods use eight sliding windows with
increasing window lengths, costing roughly x8 the time. However,
even reducing the number of sliding windows to four, which is al-
ready too coarse, SAXRegEx still outperforms all benchmarking
methods. Second, SAXRegEx has the notion of early termination
as soon as the search engine notices a partial mismatch.

5. Discussion and Limitations

Our industry collaborator IAV deploys SAXRegEx in a software-
as-a-service environment and applies it to data from engine control
units, transmission control units and CAN bus data, where hetero-
geneous horizontal scaling of the pattern and inter-track time shifts
occur regularly. It satisfactorily meets automotive engineers’ flexi-
ble needs for prompt search results.
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Figure 5: Visual inspection: result on the dataset CAN 2.

SAXRegEx perfectly finds inter-track time-shifted patterns, while
the benchmark methods suffer from false negatives and false posi-
tives. Description of the elements in the figure as well as complete
version for all methods and datasets are in Appendix D.

SAXRegEx does not calculate similarity profiles. It makes sense
to use a relatively large threshold, tolerating more false positives
and filter the predictions with fine-grained distance metrics.

Our current query expansion does not cover vertical translation
and scaling of the pattern perpendicular to the time axis. The user
should ensure that they do not affect the patterns in the time series.
One remedy for the vertical translation problem can be the usage
of the derivatives instead of the original data.

We plan to investigate the time complexity of SAXRegEx and
carry out experiments to study its scalability with increasing query
sizes (especially after SAX) and the increasing number of tracks in
a contour plot. We would also like to examine the degree of distor-
tions that SAXRegEx can bear.

Finally, the current implementation requires a user interface for
query definition, progress monitoring, result inspection, and param-
eter tuning. We plan to collect requirements from the domain ex-
perts for the Ul survey the current Visual Query Systems (VQSs),
and design a user interface emphasizing the query definition, e.g.
for inter-track time-shifted patterns.

6. Conclusion

With SAXRegEx, we present a method for multivariate time se-
ries retrieval based on SAX, regex, and query expansion. It excels
in capturing distorted patterns of various types. In particular, our
search engine is ideal to find patterns that are scaled horizontally
along the time axis heterogeneously or patterns showing inter-track
time shifts, while significantly outperforming state-of-the-art meth-
ods in terms of speed. SAXRegEx assists automotive engineers
quickly find patterns related to various events in the measurement.
Nonetheless, the method itself is not limited to any domain-specific
prerequisites and can be used in other domains as well. In the fu-
ture, we plan to design a user interface focusing on the query defi-
nition with various kinds of distortions.
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