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Figure 1: The Visual Analytics environment is composed of a Sankey diagram (B) showing connections among symptoms, anatomies, and
diseases categories; a left pane (A) dedicated to symptoms and a right pane (C) dedicated to anatomies; the list of disease categories (D),
the diseases similarity matrix (E), the top ten ranking of similar diseases (F) and a similarity radar chart (G) for their comparison.

Abstract
The traditional approach in medicine starts with investigating patients’ symptoms to make a diagnosis. While with the advent
of precision medicine, a diagnosis results from several factors that interact and need to be analyzed together. This added
complexity asks for increased support for medical personnel in analyzing these data altogether. Our objective is to merge the
traditional approach with network medicine to offer a tool to investigate together symptoms, anatomies, diseases, and genes to
establish a diagnosis from different points of view. This paper aims to help the clinician with the typical workflow of disease
analysis, proposing a Visual Analytics tool to ease this task. A use case demonstrates the benefits of the proposed solution.

CCS Concepts
• Human-centered computing → Visual analytics; • Applied computing → Computational genomics; Biological networks;
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1. Introduction

Nowadays, a large amount of data is available for biomedical re-
search and clinical applications. However, its integration and ex-
ploitation are still complex tasks, often inaccessible to those with-
out non-trivial computational knowledge. In particular, there are
now large knowledge bases (KBs) for which exploration with Vi-
sual Analytics (VA) approaches would be very desirable and useful.
Some of these KBs, such as DRKG [ISM∗20] or Het-
ionet [HLH∗17], are hetnet, i.e., heterogeneous information net-
works of biomedical knowledge. They encode relationships and
associations among many different types of biomedically-relevant
entities from a large number of studies into a single, integrated re-
source. While their advanced computational analysis has already
proved very useful [SCN∗22], there is still a lack of tools that
can easily and intuitively navigate their data. VA potentially rep-
resents a tool of great importance, as has already been the intro-
duction of the network paradigm and other abstract mathematical-
computational concepts in biology and medicine. [BO04,TGZ∗10].
Current approaches in biomedicine and clinical practices (e.g., drug
repurposing) often tend to oversimplify disease mechanisms (we
frame this as classic medicine support), which are in fact complex
processes involving a large number of intertwined players, also ex-
emplified by the spread, advancement and the success of compu-
tational network medicine approaches (we frame this as precision
medicine support). Moreover, disease definitions are still mainly
symptom- rather than mechanism-based, therapies and therapeu-
tics being often likewise. With the perspective of framing this com-
plexity within a systems approach, in this work, we have extracted
a large amount of information from DRKG and Hetionet and built
a VA tool for their exploration. We exploited the data on the as-
sociation between diseases, symptoms, and anatomies, also taking
into account other available information such as genetic data (gene-
disease associations) and of belonging to cell signaling pathways,
among others.

The contributions of this paper are: (i) an initial effort to merge
the two illustrated medicine approaches for interactive analysis; (ii)
a VA environment that supports the disease diagnosis task exploit-
ing the joint classic and precision medicine approach; (iii) a use
case that shows an example of how the VA environment supports
this analysis.

2. Related Work

The increasing amount of data due to scientific advancements such
as human genome sequencing, metagenomics, proteomics, among
others the analysis of network medicine, and the advent of pre-
cision medicine to treat patients, have brought new challenges in
their analysis toward supporting decision-making activities such
as disease diagnoses or treatments. A possible solution that has
been adopted in recent years is Visual Analytics (VA) because of
its usefulness in the analysis of large quantities of data while at
the same time aiding the user in visually exploring the results.
Thanks to its nature, VA is applied to different fields in the health-
care domain, ranging from public health [PL20] to epidemiol-
ogy [PKH∗16], multi-faceted medical data [Rai19] genomics, and
cancer [QLN∗19]. Looking at the existing literature in this area, we
have split the works into two significant groups depending on the
applied strategy: classic medicine or precision medicine support.

Classic medicine support Classic medicine support is based on
the clinical life of patients that can be found analyzing Electronic
Medical Records (EMR) or Electronic Health Records (EHR).
Zhang et al. [ZBA∗13] propose a visualization framework able to
capture all health conditions of the past and present to serve as a
quick overview and apply a reasoning chain to understand and gen-
erate a diagnosis. They use a sunburst to represent the hierarchical
structures of related events, while we use a Sankey to represent
the hierarchy of elements. Kwon et al. [KCK∗19] apply recurrent
neural networks (RNNs) on EMRs and develop RetainVis, a VA so-
lution to increase the interpretability and interactivity of RNNs that
helps users to explore real-world EMRs, gain insights, and gener-
ate new hypotheses. Also, Perer and Sun [PS12] analyze the clin-
ical events of patients to improve disease diagnosis by providing
insights for understanding disease progression using MatrixFlow
and supposing the same flow for other patients. In this case, the
matrix is a temporal flow matrix, whereas we use a matrix to rep-
resent the similarity of disease using different parameters. Instead,
Basole et al. [BBK∗15] apply process mining to analyze and inves-
tigate the care process of pediatric asthma and use the VA to gain
insight. Unlike all these works, we do not use patient and temporal
data, but this paper investigates the network composed of symp-
toms, anatomies, and diseases.

Precision medicine support Precision medicine support takes
into account individual variability in genes for disease treatment
and prevention, exploiting the connections obtained through the
analysis of network medicine. The strength of network medicine
is the heterogeneity of the data [HK20], because it allows to ana-
lyze the problem from different points of view, also exploiting the
concept of multilayer network [KAB∗14].
This capability led to the development of VA solutions able to
support the exploration of precision and network medicine data.
The visualization efforts usually target the protein-protein interac-
tion network (interactome) [CMR∗09], disease modules [RAS∗21],
gene pathways [MSH∗05], and drugs composition [IGA20]; also
analyzing the connections among different layers, as gene and dis-
eases [ABF∗19]. Focusing on the use of precision medicine, Hit-
Walker2 [BMW16] is a reproducible and flexible VA framework
for prioritization that applies to a large number of clinical, transla-
tional, and primary science use cases. The results are obtained by
investigating many aspects of the genes layer and the data is not
connected to a specific patient but derives from the network inves-
tigation. Unlike this approach, we reconnect the gene information
to the specific disease to obtain the similarity among diseases. In
contrast, ClinOmicsTrailbc [SKT∗19] focuses on the breast cancer
treatment stratification to assess and prioritize breast cancer drugs
by investigating the specific genome of the patients. While authors
propose a rich VA workflow obtaining ten blocks of decision sup-
port, we start from the opposite perspective and use only two deci-
sion support elements, an overview of specific tumor characteristics
and prediction of tumor sub-type. These are mapped to symptoms
and anatomies as done in the classic medicine support, and then we
exploit precision medicine to work on similarity.

3. Proposed approach

The VA environment aims to help the clinician, who works on
diseases diagnosis and analysis in not time-critical situation (e.g.,
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practitioner), into the investigation of disease who a patient suf-
fers, taking into account the classic medicine and the precision
medicine. To better support this workflow and obtain the require-
ments for the VA environment, we have worked together with
two expert bioinformatics. The proposed solution followed a user-
centered design paradigm [ND86], performing a set of ten meetings
lasting on average 1.5 hours each over five months. They were or-
ganized in two initial brainstorming sessions, where the main prob-
lems for visual support of disease diagnosis were identified and
discussed, three meetings for identifying data sources and data cat-
egorization principles, five meetings to support the iterative devel-
opment of the VA environment.

The brainstorming sessions were based on a think-aloud protocol
to describe the clinician’s disease diagnosis workflow and how it
can be merged with the precision medicine analysis. This process
generated three requirements for the VA environment:

• RQ1: the ability to analyze data from classic medicine and pre-
cision medicine perspectives in a combined way.

• RQ2: support the investigation of unreliable knowledge of the
patient’s conditions based only on his/her symptoms.

• RQ3: the capability to refine the set of disease candidates and
compare them.

Figure 2: Schema of the entities divided into precision medicine, in
orange, and classic medicine, in green.

During the three meetings related to the data sources, the needed
data operations were arisen and discussed; due to the different types
of sources, data integration was deemed mandatory to perform a
combined analysis [MH22]. In this work, we targeted data com-
ing from two KBs: DRKG and Hetionet. They contain relations
among entities from classic medicine (e.g., diseases, symptoms,
anatomies) and precision medicine (e.g., the genetic data such as
molecular functions, pathways, cellular components, and biolog-
ical processes). Figure 2 shows a simplified data schema, where
the diseases are identified as the common bridging layer, while the
genes are the key points for the precision medicine analysis. More-
over, Table 1 recaps the types and amount of data considered.

To model the relations among symptoms, anatomies, and dis-
eases and to help the user in their navigation, we categorize the
entities using three ontologies. The diseases are categorized by
the Human Disease Onthology [SMS∗22] taking the subdivision
by anatomical entities. The symptoms are labeled with the MeSH
Class [ROG63], while anatomies follow the Uberon Anatomy On-
tology [MTG∗12] focused on anatomical systems.

The five meetings that supported the system development were
focused on the presentation of mock-ups to expert users and collect-
ing feedback on the general behavior and workflow. They informed

Table 1: Number of nodes and edges divided for type.

Entities # Relations #
Disease 133
Anatomy 400 Anatomy-Disease 3602
Symptom 415 Symptom-Disease 3357
Genes 11814 Gene-Disease 27963
Molecular Function 2839 Gene-Molecular Function 70845
Cellular Component 1377 Gene-Cellular Component 54662
Biological Process 11312 Gene-Biological Process 447975
Pathway 1821 Gene-Pathway 67441

the incremental refinement of prototypes, fine-tuning visual encod-
ings, interaction means, layout, and testing simplified analyses.
The resulting VA environment, visible in Figure 1, can be divided
into two main parts: classic medicine support (upper part), and pre-
cision medicine support (lower part). The choice of this layout is
based on interconnecting the two perspectives, but still making vi-
sually evident their boundary, supporting a workflow that mixes the
two approaches (RQ1).
The classic medicine support shows the overview of symptoms and
anatomies categories, and it is divided into three views: a left pane
(see Figure 1A) dedicated to symptoms and a right pane (see Fig-
ure 1C) dedicated to anatomies. Both follow a 2-layer hierarchical
approach, either showing the list of categories or how each category
is composed, using a detailed list. In the central area, an interactive
Sankey diagram (see Figure 1B) [RHF05] shows the overview of
connections between symptoms and anatomies, giving the possi-
bility to add on-demand the disease categories.
The precision medicine support is focused on the refinement of dis-
ease candidates and analysis of their similarity. It is composed of
four views: the list of disease categories (see Figure 1D), the dis-
eases similarity matrix (see Figure 1E), the top ten ranking of sim-
ilar diseases (see Figure 1F), and a similarity radar chart for their
comparison (see Figure 1G).
Focusing on the main visual encodings, the goal of the clinician
is to analyze the relations that occur among symptoms, anatomies
and diseases, and for this reason we chose to represent the net-
work through the Sankey visualization (Figure 1B). It visually en-
codes and focuses the attention on the flow of interest, allowing
interactive exploration of the categories of interest. Moreover, the
Sankey allows allows the exploitation of several visual features:
each rectangle represents a category (of symptoms or anatomies re-
spectively), where its height represents the cardinality of elements
inside the category, and its color encodes the number of connec-
tions with other categories (total). This solution allows evaluating
at a glance both the prominence of elements inside a category and
their total interconnections with the other categories. The thickness
of each ribbon quantifies the number of connections among each
pair of categories, providing a breakdown of the previous total in-
terconnections.
When the clinician selects a category due to patient health condi-
tions, the selection of a category adds a color coding for the specific
element that is dynamically picked from a ten-values ordinal color
scale; in this way, each selected category is easily distinguishable
from the others. The selection is also supported by a range slider,
to filter the paths due to the number of connections, and a boxplot,

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

27



A. Palleschi, M. Petti, P. Tieri & M. Angelini / Toward disease diagnosis visual support bridging classic and precision medicine

which shows the distribution of the connections for each element
inside a category. The use of category reinforces the hierarchy in
the network medicine data and allows the clinician to interpret a set
of elements with similar conditions (RQ2). Selecting multiple cat-
egories of symptoms and anatomies, she obtains the list of diseases
connected to them.
The clinician can refine this set by also selecting a category of dis-
eases from the category list (Figure 1D), or on the Sankey (show-
ing the disease with the relative button). These operations support
a progressive refinement of the list of potential diseases that match
the reported symptoms and interested anatomies. The number of
elements depends on the selection based on the categories of in-
terest and the result of this step, which can be conducted multiple
times, is then used as the base for diseases confirmatory laboratory
tests. To reach this goal, analyses based on precision medicine are
exploited in our solution, as they are the best fit to compute fine-
grained indicators on the diseases.
We first calculate similarity among diseases, and due to the high
cardinality of the data, we encode the results in the disease similar-
ity matrix (Figure 1E), to obtain a quick overview and an easy com-
parison (RQ3). The similarity is computed using the Jaccard Simi-
larity Score, considering disease module composition (e.g., genes)
and associated symptoms. The default formula weights these com-
ponents equally, while the clinician can re-weight them interac-
tively and check the new similarity; this behavior allows to analyze
the diseases connection from the genetic or the symptoms point of
view, or both. In addition, the clinician can personalize the simi-
larity definition by selecting only the components she believes im-
portant using checkboxes (e.g., molecular function, cellular com-
ponent, biological process, and pathways). Each matrix cell will
encode the result of the similarity with an interpolate green color
scale.
In order to support a faster analysis, a disease ranking list repre-
sents the top ten similar diseases (Figure 1F), which are the darker
green cells of the matrix. Mouse-hovering on the rows of the dis-
ease ranking list, the clinician can investigate the diseases, and by
clicking them, she can compare multiple diseases on the radar chart
(Figure 1G). Each disease selection adds a polygon on the radar
chart, helping compare the breakdown on the components of their
similarity. The clinician can quickly compare the most similar dis-
eases and eventually include or exclude them, forming a new set of
candidate diseases for laboratory tests.

While the workflow has been described as a single sequential
flow of analysis, its real application is not limited to one execu-
tion. The clinician can exploit the added knowledge from the can-
didate diseases list to include or exclude initially chosen anatomies
or symptoms, affecting the disease similarity scores and the newly
obtained disease ranked list, in a classic VA fashion.

4. Use case

The use case’s goal is to show how a clinician can act to establish
a disease diagnosis using the VA environment and how much it is
useful to investigate at the same time symptoms, anatomies, and
genetic data. The clinician can select the specific symptoms cate-
gories, search them in the relative search bar or investigate a disease
category regarding the relative symptoms and anatomies.
For example, it is possible to visually explore the associations be-

tween a broad class of diseases, e.g., the diseases of the nervous
system, the symptoms, and the specific diseases and anatomies in-
volved. It may help enable the elaboration of new working hypothe-
ses on a mechanistic basis to be tested experimentally.

By selecting the Nervous System Diseases category from the
left panel, she obtains a selection of 213 symptoms. The ribbons
of the associations among the symptom category and all the com-
partments considered are highlighted mouse-hovering on the spe-
cific category, while information among paths can be visible by a
mouseover interaction. The paths can be filtered with a selected
range on the menu to obtain the weighted connection of interest. In
this case, the range is moved to the [22− 23000] interval because
the clinician has interactively configured the Sankey visualization
to show only the symptoms category of interest.
Now it is possible to decide the anatomies categories of interest.
From the right panel, she selects the digestive system, endocrine
system, and immune system. The resulting selection contains 45
anatomies and 213 symptoms. She obtains the diseases in com-
mon and can investigate the directed paths among them by adding
disease categories to the Sankey. The clinician is interested in in-
vestigating diseases related to the same categories of anatomical
entities chosen, so she selects endocrine system disease, gastroin-
testinal system disease, and, immune system disease, resulting in
32 selected diseases. She investigates the similarity among the se-
lected diseases to all the others through the disease similarity ma-
trix. Inspecting the disease ranking list, the most similar diseases
(five) are the malignant neoplasm of the stomach (DO13274) with
ovarian neoplasm (D010051), liver neoplasm (D008113), glioma
(D005910), and breast cancer familial (C562840), all within a
range of similarity [0.7690,0.7769]. Raising the weight of symp-
toms to 0.8 brings the range of similarity for malignant neoplasm of
the stomach to [0.9076,0.9108]. By removing the symptoms from
the calculation of similarity, the most similar diseases are ulcerative
colitis (D003093) and ileitis (D007079) with a similarity of 0.6020.
The clinician can also compare different diseases from the dis-
ease ranking list, adding them to the similarity radar chart. In this
case, ulcerative colitis and ileitis are different in the gene similar-
ity with respect to pancreatic neoplasm and prostatic neoplasm.
At the end of the analysis, the clinician obtains four diseases that
need a deeper investigation with laboratory tests: malignant neo-
plasm of the stomach and ovarian neoplasm, due to the similarity
of all the features; and ulcerative colitis and ileitis due to the simi-
larity among the gene compositions. A demonstrative video of the
use case can be found at https://aware-diag-sapienza.
github.io/ddva/.

5. Conclusion and future work

This paper describes an initial effort to integrate the classic and pre-
cision medicine approaches to support the diagnosis of a disease ex-
ploiting a VA environment. This preliminary work had taken into
account part of the entities of existing KBs, integrated their data,
and built a VA environment able to support a clinician workflow in
executing the diagnosis of a disease. In future works, we plan to
investigate and systematize the interconnection and differences be-
tween those approaches, having attacked only a part of the problem.
Moreover, we plan to extend the degree of integration on disease
diagnosis support by integrating genomic data for the anatomies.
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