EuroVis Workshop on Visual Analytics (2022)
M. Angelini and J. Bernard (Editors)

A Comprehensive Workflow for Effective Imitation
and Reinforcement Learning with Visual Analytics

Yannick Metzl, Udo Schlegel1 , Mennatallah El—Assadyz, Daniel Seebacherl, Daniel Keim!

! University of Konstanz, Germany

2ETH Ziirich, Switzerland

Abstract

Multiple challenges hinder the application of reinforcement learning algorithms in experimental and real-world use cases even
with recent successes in such areas. Such challenges occur at different stages of the development and deployment of such models.
While reinforcement learning workflows share similarities with machine learning approaches, we argue that distinct challenges
can be tackled and overcome using visual analytic concepts. Thus, we propose a comprehensive workflow for reinforcement
learning and present an implementation of our workflow incorporating visual analytic concepts integrating tailored views and

visualizations for different stages and tasks of the workflow.
CCS Concepts

* Human-centered computing — Visual analytics; * Computing methodologies — Reinforcement learning;

1. Introduction

Recently, there have been notable examples of the capabilities
of Reinforcement Learning (RL) in diverse fields like robotics
[NL19], Physics [MGL21] or even video-compression [M*22]. De-
spite these successes, the application and evaluation of recent deep
reinforcement and imitation learning techniques in real-world sce-
narios are still limited. Existing research almost exclusively fo-
cuses on synthetic benchmarks and use cases [BNVB13]. We ar-
gue that the usage and evaluation in realistic scenarios is a manda-
tory step in assessing the capabilities of current approaches and
identifying existing weaknesses and possibilities for further devel-
opment. In this paper, we present a visual analytics workflow and
an instantiation of the approach that facilitates the application of
state-of-the-art algorithms to various scenarios. Our presented ap-
proach is designed to specifically support domain experts, with ba-
sic knowledge of core concepts in reinforcement learning, who are
interested in applying RL algorithms to domain-specific sequential-
decision making tasks. The goal is to enable the effective appli-
cation of their knowledge to (1) design agents and simulation en-
vironments including reward functions, and (2) a detailed assess-
ment of trained agents’ capabilities in terms of performance, ro-
bustness, and traceability. A structured and well-defined approach
can also help to critically investigate and combat some fundamen-
tal difficulties of reinforcement learning like brittleness, general-
ization to new tasks and environments, and issues of reproducibil-
ity [DLM*20,HIB*17,ZBP18].

Outside of reinforcement and imitation learning, there exists
a wide range of workflows and interactive visual analytics (VA)
tools for the training and evaluation of ML models [ACD*15,
LSL*16, LWLZ17, ERT* 18, ALA* 18, SKKC19, SSSE20]. Com-
pared to other fields of machine learning, there has been less work
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on applying visual analytics in the space of reinforcement and es-
pecially imitation learning. A large number of necessary decisions
and the existence of interconnected tasks make the application of
interactive machine learning, with close coupling of model and hu-
man, especially valuable for reinforcement learning.

Existing work such as DQNViz by Wang et al. [WGSY19] en-
ables the analysis of spatial behavior patterns of agents in Atari
environments like Breakout (see Arcade Learning Environment
[BNVB13]) using visual analytics. He et al. present DynamicsEx-
plorer [HLv*20] to evaluate and diagnose a trained policy in a
robotics use case, which incorporates views to track the trajectories
of a ball in the maze during episodes. The application enables the
inspection of the effect of real-world conditions for trained agents.
Saldanha et al. [SPBA19] showcase an application that supports
data scientists during experimentation by increasing situational
awareness. Key elements are thumbnails summarizing agent per-
formance during episodes, and specialized views to understand the
connection between particular hyperparameter settings and training
performance.

Compared to the existing approaches, we (1) Extend the exist-
ing frameworks to encompass a holistic view of the relevant stages
of the reinforcement learning process instead of just sub-tasks; (2)
present a generic, easily adaptable application, which can be in-
stantiated to specific use cases; (3) explicitly consider imitation
learning, due to the frequent use in conjunction with reinforcement
learning; (4) apply our framework in a novel, custom real-world
use case instead of an existing benchmark environment.

2. A Workflow for User-Guided RL Experiments

To the best of our knowledge, there has not been a comprehensive
workflow for experimentation and application of reinforcement
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Figure 1: Overview of the RIVA (Reinforcement and Imitation Learning with Visual Analytics) workflow. RIVA is an integrated experimen-
tation workflow and application, that provides a range of tools to support all major critical steps: a) Inspecting Observations, Actions, and

Rewards and ensuring matching values between simulation, expert demonst

rations, and architectures, b) Provenance Tracking of interesting

states to enable targeted case-based evaluation, c) Tracking of parameters and settings to ensure reproducibility and understand the effect of
design decision, d) Interactively monitor training and final performance beyond reward, e) enable effective evaluation by integrating multiple
evaluation tools, e) Explain behavior by natively integrating XAl methods like input attribution techniques

learning tightly incorporating users. This leaves both researchers 1.
and practitioners to loosely defined best practices. In the following
chapter, we outline a conceptual workflow for developers and re-
searchers, which we base on guides, projects [Achl18, Irp18], and
popular open-source libraries [RHE* 19, HRE* 18]. We follow the 2.
terminology used, e.g., in the Gym package [BCP*16]. As a start-
ing point, we consider the fundamental workflow from Sacha et
al. [SKKC19] that is aimed at generic ML tasks: 3.

A. Prepare-Data: Data selection, cleaning, and transformations; de-
tection of faulty or missing data

B. Prepare-Learning: Specification of an initial model, preparation
of training, selection of algorithms, and training parameters

C. Model-Learning: Training of the actual model, monitoring, and 4.*
supervision

D. Evaluate-Model: Apply the model to testing data, selecting and
analyzing quality metrics, understanding the model

We are interested in highlighting steps and tasks that are specific
and critical to reinforcement and imitation learning, and which have

Designing the Environment: Designing, Implementing, and De-
bugging: Designing either a simulation environment or interface
to the real world. The environment should model the desired
problem as accurately as necessary to solve the specified task.
Defining the observation space: Define the agent’s interface to
perceive the environment and act in it. The observation space
can consist of arbitrary numeric input (e.g., images, signals).
Defining the action space: The possible interactions of an agent
with the environment. The specific problem sometimes restricts
the action space, i.e., the available actions are determined by the
agent and the task to solve. Generally, we have significant free-
dom in how to encode the actions (e.g., categorical or continu-
ous, flat or complex nested actions).

Providing the dataset of expert demonstrations: A step unique
to imitation learning is the provision of a dataset for the agent.
It is helpful to understand what is contained in the dataset, e.g.,
to identify if there is sufficient variety in the dataset to capture
the desired task. The user, therefore, should be able to query and
visualize the trajectory data contained in the dataset.

not been captured previously by more generic workflows. Figure 1 For the spaces, possible errors include incorrect values, cut-off
summarizes our proposed workflow described in this chapter. We points (e.g., premature episode termination), faulty scaling or pro-
further present more details on the relevant stages: cessing of values. In imitation learning, defining the observation

space corresponds to the shape of the data fed to the algorithm dur-

Setup and Design of the Environment Instead of preparing a
dataset, the first step for reinforcement learning is specifying the
environment. This is also necessary for many variants of imita-
tion learning, that require access to an underlying environment for po
training and/or evaluation. Such an environment specification can
be seen as related to the task of data cleaning and transformation,
specifically feature engineering, found in supervised learning. This 5.*
stage includes four/five distinct steps:

In

ing training. Ensuring the consistency of these interfaces is a major
difficulty, so we propose versatile inspection methods to analyze
value ranges, dimensions, or effects of actions. Such inspection

ssibilities are particularly useful for custom environments sub-

jected to rapid prototyping and evaluation.

reinforcement learning, there is another crucial step:

Designing the reward function: Reward design is both an essen-
tial and difficult step for reinforcement learning. A scalar reward
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Figure 2: The implementation of the RIVA workflow applied to swarm reinforcement and imitation learning. Ul elements are linked to
the respective steps of the workflow. A show the Setup View page with three exemplary interactions: (1) The user analyzes values passed
as observations and spots violations of bounds and faulty values, (2) looks at the environment with a custom, interactive rendering view,
and linked controls, (3) analyzes and selects related states via the state embedding. B shows the run browser, where the user can (4) use a
pixel-based view displaying episode reward over training to quickly analyze many different runs, (5) Browse parameter configurations of the
runs, and (6) and analyze the agents via the established inspection methods at regular checkpoints during training (not displayed).

has to be passed to the agent at every step to specify the success
of solving a potentially long-term goal.

An overly informative reward function can lead to behavior like
reward hacking [Irp18,EH19], i.e., learning behavior that does not
contribute to the actual intended goal. Throughout the workflow, re-
ward metrics are tightly coupled with replay mechanics of the agent
behavior in the environment to spot behavior like reward hacking.
On the other hand, during random exploration, an agent must re-
ceive non-zero feedback at least at some timesteps to learn. To fa-
cilitate this issue, we propose testing with initial random action se-
lection to investigate the explorability of initial strategies.

Model Training Choices during training setup have to be carefully
tracked and analyzed:

6. Choose the algorithm: There are many different algorithms in
the space of deep reinforcement/imitation learning, which can
be adapted to specific problems.

7. Choosing Neural Network Architectures: In the context of deep
learning, choosing an appropriate network type (e.g., Feed-
Forward Network vs. LSTM) and hyperparameters like layer
size continue to be essential considerations.

8. Choosing algorithm Hyper Parameters: Compare to supervised
deep learning, deep reinforcement learning is very susceptible to
the choice of hyperparameters, which can hugely affect training
performance [ARS*20, HIB*17].

By recording these choices during the design and training phase
need, users can investigate their effect on training performance.
Therefore, instantiations need to enable automated experiment
tracking. Results are linked with the chosen settings in a search-
able, comparable way.
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Supervise the Learning Process Dynamic supervision of train-
ing:

9. Monitoring the training progress: Experiments in RL can be very
computationally demanding and take a long time. Monitoring
training statistics can indicate progress and can avoid spending
resources on unsuccessful training.

Monitoring should be facilitated at different scales, and encompass
both performance metrics and the interactive inspection of agent
behavior during training, e.g., via a checkpointing mechanism.

Evaluation and Understanding The final step of the experimen-
tation workflow is the evaluation of a trained agent. Particularly,
our workflow encompasses four dedicated evaluation tools:

10. Comparison against a baseline: A widespread measure to evalu-
ate the performance of an agent is to compare its achieved reward
against a baseline, e.g., a human expert or an existing algorithm.

11. Testing in a validation environment: Users must be able to test
agent performance in separate validation environments.

12. Probe behavior in specific fest cases: Provenance Tracking, at

each stage of the process, enables to later test the behavior of an
agent in a domain-specific situation of interest.

13. Understand the agent behavior via XAl methods. Crucially, the

user must be able to investigate, e.g., points of failure in the
agent’s behavior.

Many of the presented mechanics, like monitoring, provenance
tracking, and interactive rendering, are also highly important for
the possible phase of Utilization. Embedding deployed agents in
an interactive visual analytics-based framework helps users to ap-
ply and supervise RL-based agents in real-world scenarios.
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3. RIVA: Reinforcement and Imitation Learning with VA

Based on the proposed workflow, we present RIVA: An Inte-
grated Workflow for Reinforcement and Imitation Learning with
Visual Analytics. RIVA operationalizes the proposed workflow
via a stand-alone web-based application. RIVA is tightly inte-
grated with existing community-driven frameworks for reinforce-
ment learning (StableBaselines3 [RHE*19]) and imitation learning
(Imitation [WTGE20]), both widely used throughout the RL re-
search community. Furthermore, more generic experiment tracking
tools like Tensorboard are also integrated as separate tabs.

Design decisions for the tools are driven by the presented work-
flow. Additionally, our goal is to support the mentioned libraries
with minimal modifications of the respective code bases. The ap-
plication is kept use-case agnostic and highly modular to accom-
modate a wide range of use cases. We present one such use case
and respective modular extensions.

During Setup and Debugging, we utilize a combined view of en-
vironment rendering, and inspection views of the observation and
action spaces, as well as the reward distribution. A state embedding
serves as an additional linked view to quickly identify related states
that the agent encounters. The setup view of RIVA allows analyz-
ing the environment step-by-step via fine-grained controls, which
enables to carefully assess the effect of actions taken in the envi-
ronment. During this initial phase, actions are performed by a ran-
dom agent, with the possibility to, e.g., use a hand-crafted baseline
agent. At each step, the dimensions of vector-valued observations
can be carefully analyzed individually, e.g., to determine violations
of the pre-determined maximum- and minimum value bounds that
have to be specified before running an experiment. The inspection
tools provide user-controllable line charts and histograms to ana-
lyze each individual dimension. Figure 2-A shows some possible
interactions in the setup view. The application allows saving differ-
ent configurations of the environment, which can be later analyzed
to enable systematic tracking of the effect of design choices on the
performance of agent training. As in later stages, users can add each
individual step as a test case for a detailed comparison of agents in
controlled situations.

To support model training, the application provides an interface
to choose settings and hyperparameters, with parameter descrip-
tions automatically generated from the documentation. The tool
enables simple comparison to other hyperparameter configurations
used for different runs. A table summarizes experiment configu-
rations and parameter settings. The table is linked to an interac-
tive line chart or pixel-based visualization which shows agent per-
formance during training. The pixel-based visualization provides
more fine-grained insight into the training results on an episode-
by-episode basis. The user can choose the normalization of the re-
wards scale and episode length in the pixel-based view to enable
head-to-head comparison between runs. A check-pointing mech-
anism enables direct insight into the agent’s behavior at different
points during training. For each checkpoint, a widget provides de-
tailed rendering and inspection. This lets the user understand the
resulting behavior at specific reward values. Figure 2-B shows the
Experiment Browser view.

Finally, Evaluation is facilitated in a separate evaluation view.
The view includes tools to interactively test and compare models

across different environments. Models saved at checkpoints can be
further analyzed to track the change of a policy during model train-
ing. Specific user-supplied validation environments can be selected
for benchmarking to test properties like robustness and generaliza-
tion. The evaluation view also natively supports input attribution
methods (e.g., IntegratedGradients [STY17]), which can display
attributions for both vector and image-based observations. As a fi-
nal component, the evaluation view contains a list of previously
saved instances, which can be pinned at any time during setup,
training, and evaluation. This enables the user to directly compare
the performance of different agents in controlled situations.

4. Applied Imitation Learning for Collective Behavior

We apply the proposed framework and developed an application in
the use case of imitation and reinforcement learning for collective
behavior: data-driven learning of the behavior of fish schools (col-
lective movement of fish swarms). We cooperated with a domain
expert throughout the entire process, from designing custom en-
vironments and agents, training, to final evaluation. Modeling the
behavior of individual actors in swarm systems has been a long-
standing problem in biology [Rey87, Sum06, CLN*13]. Learning
individual policies that lead to coordinated collective behavior via
both reinforcement learning, and imitation learning from recorded
trajectories, is an exciting application that promises to overcome
existing simplifications in hand-crafted models.

The use case can be well integrated into our workflow and appli-
cation with minimal modifications. Noticeably, a custom interac-
tive rendering of the environment was added (see Figure 2A.2). We
utilize the modularity of the software to integrate additional com-
ponents like custom visualizations. During the design phase, the
inspection views were used to ensure consistency between environ-
ment, agent, and dataset, e.g. to spot premature episode termination
(see Fig. 2A.1). Our workflow was highly effective in maintaining
a high level of productivity and consistency through an iterative
design process, in which we experimented with different observa-
tion space designs, reward functions, network types, and hyperpa-
rameter configurations. The set of evaluation tools is used both for
internal evaluation and external presentation.

5. Conclusion

We presented RIVA, a comprehensive workflow for RL and IL
using VA concepts, and an application to showcase the proposed
workflow on an applied use case. We argue that a holistic approach
to RL/IL training can enable better and more impactful develop-
ment and research. Not fully addressing the challenges posed by re-
inforcement and imitation learning can have negative consequences
of hindering progress, potentially damaging the reputation of these
methods, and decreasing trust from potential users. Future work
could refine the visual presentation of the workflow. A specific fo-
cus could be given to advanced provenance and change tracking to
trace the effect of design changes made during the process.
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