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Abstract

Dimensionality reduction techniques are popular tools for the visualization of neural network models due to their ability to
display hidden layer activations and aiding the understanding of how abstract representations are being formed. However,
many techniques render poor results when used to compare multiple projections resulted from different feature sets, such as the
outputs of different hidden layers or the outputs from different models processing the same data. This problem occurs due to
the lack of an alignment factor to ensure that visual differences represent actual differences between the feature sets and not
artifacts generated by the technique. In this paper, we propose a generic model to align multiple projections when visualizing
different feature sets that can be applied to any gradient descent-based dimensionality reduction technique. We employ this
model to generate a variant of the UMAP method and show the results of its application.

1. Introduction

Dimensionality reduction (DR) techniques are mechanisms that
embed complex data into low-dimensional spaces while still re-
taining meaningful relationships between objects, allowing for both
computational and human interface operations to be conducted in
a faster and more efficient manner. In data visualization and visual
analytics, they are generally used to map multivariate data into 2D
or 3D spaces, with the goal of exploration, observation, and com-
prehension of patterns and features.

Commonly called Multidimensional Projections in this con-
text [NA18], these techniques have been used in many differ-
ent domains and applications, such as document collection ex-
ploration, vector field analysis, and multimedia organization. Re-
cently, the use of projections as a tool to aid the understanding
of artificial neural network (ANN) models has become an ac-
tive subject in the research community [RFFT17, RFT17, ERT19],
with their use being adopted in several state-of-the-art VA ap-
proaches [PHVG™*18, KAKC17] to analyzing hidden neural net-
work information.

However, comparing projections generated by different feature
sets representing the same data, such as outputs from multiple
hidden layers of a neural network, present a few problems: at-
tribute values and ranges may be widely different, and the num-
ber of attributes itself may not be the same. Furthermore, many
sophisticated projection techniques are non-linear, meaning that
there are no guarantees that small variations in the same feature set
(e.g., small adjustments in neural network outputs from one train-
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ing epoch to the next) will not result in widely different projec-
tions [WVJ16,RFT16].

While there are a few works dedicated to solving these issues,
there are certain problems when generalizing their approaches, and
there is no discussion over how to compare how projection tech-
niques perform in the task of generating aligned embeddings of
different feature sets so that their properties can be observed. Many
projection techniques offer properties that are desirable for specific
applications, but cannot be used in this context due to their inability
to holding stable projections between observations.

In this short paper, we present a generic model that can be ap-
plied to any gradient descent-based projection technique to include
an alignment factor that minimizes non-relevant variation between
projections. Our model addresses issues that arise with this gen-
eralization, such as dimensionality differences and cost function
variations. We apply this model to generate an extension of the
well-known UMAP technique [MHM18] that can keep alignment
over multiple feature sets, and show its functionality in neural net-
work applications. This extension is shown to produce more reli-
able aligned results while maintaining desirable features of UMAP.

In short, the main contributions of this paper are:

e A generic flexible framework for supporting projection align-
ment with any gradient descent-based DR technique;

e A variant of the UMAP projection technique that performs align-
ment.
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2. Related Work

Multidimensional Projections can be described as operations that
receive an input X = (x1,x2,...,xs) € R" and produce a represen-
tation X € R”, p < m as output. This representation is designed
as to preserve dissimilarity relations §;; between points x; and x;
as much as possible. Most visualization-related applications aim to
embed data in the visual space, with p =2 or p = 3.

There are many techniques to perform projection. Recent sur-
veys [NA18, EMK*19] discuss each technique and classify them
according to many parameters, such as linearity, scope of opti-
mization (local or global), data type, or capability of supervi-
sion. Among the most known techniques, we can cite the classi-
cal MDS [Tor52], PCA [Hot33], LDA [Fis36], LSP [PNMLO08],
LAMP [JCC*11], PLMP [PSN10], t-SNE [VDMHO8].

Recent techniques, such as H-SNE [PHL*16] and
UMAP [MHMI18], aim to provide non-linear dimensionality
reduction that preserves both local neighborhoods and global
data structure. These techniques are shown to be of great use
in data analysis applications, especially in machine learn-
ing. [PHVG™*18,CAS*19]

One type of application for projections that have become very
popular is in the analysis of (deep) neural networks [RFFT17,
RFT17,ERT19,PHVG*18, KAKC17, CPE20]. One typical use of
projection is to compare outputs from multiple hidden layers of a
neural network, producing a different image for each layer. In this
scenario, projections need to be aligned so they can be properly
compared. The idea of Projection Alignment is to obtain multiple
projections from the same number of feature representations of the
same data in such a way that projected distances are as similar as
possible to distances in the original feature sets while also keeping
projections as similar as possible with one another.

Currently, only a few projection techniques support alignment
natively, mostly being restricted to using the same initialization
parameters [VDMHOS] or a fixed set of control points [JCC*11].
To the best of our knowledge, the only techniques capable of ac-
tively aligning outputs during projection generation are the Dy-
namic t-SNE (Dt-SNE [RFT16]) and the Visual Feature Fusion
(VFF [HP19]). These two are better detailed in the next section.

3. Aligning Projections

As previously discussed, alignment is essential when comparing
projections in an analytical task. Figure 1 illustrates that, present-
ing an example of projections with and without alignment. We
show projections from two feature sets, fO and f1, that are pro-
duced from the activations of the last two hidden layers of a Con-
volutional Neural Network (CNN) from 2,000 samples from the
MNIST [LBBH98] dataset. The upper row contains projections p0
and p1 obtained from the standard UMAP technique, and the lower
row contains projections from our modified version of UMAP to
preserve alignment (Multi-feature UMAP). We know beforehand
that the two activation sets are quite similar. However, even if ini-
tialized with the same parameters, standard UMAP generates pro-
jections whose clusters are in different positions, and linear trans-
formations, such as Procrustes analysis, cannot correct this mis-
match. This is even more common in projection techniques that are
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Figure 1: Projections py and p| of two feature sets using stan-
dard UMAP (no alignment) and our model (MF-UMAP). The fea-
ture sets correspond to activation data from two hidden layers of a
CNN. These layers provide similar outputs, so the variation in the
projections should be small. However, the unaligned projections
cause groups to change places (e.g., the orange group) and may
result in misinterpretation.

less strict regarding inter-cluster distances, such as t-SNE. Tech-
niques that solve this problem, and therefore form the basis of our
generic alignment framework, are presented next.

3.1. Dynamic t-SNE

When projecting layer activation data from neural networks,
Rauber et al. [RFFT17] discussed methods of reducing non-
relevant variability in data projected with t-SNE, such as using
point-cloud registration and using previous projections as initial-
izations. The authors later proposed the Dt-SNE [RFT16], a varia-
tion of t-SNE designed to produce successive projections of a time-
varying dataset while minimizing irrelevant projection variability
and ensuring temporal coherence. This is achieved by adding a term
to t-SNE’s cost equation, as follows:

N
Canell) = Conell + 55 Y il = plt+ 12 ()
i=1
In this equation, N is the number of data objects in each time step
t € T to be projected, Cisnet] is the standard t-SNE cost for projec-
tion ¢, p;[t] is the position of data instance i in projection ¢, and A is
a parameter that controls the trade-off between temporal alignment
and fidelity to the standard t-SNE optimization.

The authors present a discussion on the different approaches to
alignment, and their reasoning for using an additional cost func-
tion term is applicable to our method as well. While Dt-SNE was
designed to align different versions of the same feature set, the al-
gorithm itself offers no such restriction, but distances in each set
need to be normalized and comparable. Its main limitation is its
temporal focus: projections are only aligned concerning the ones
immediately before or after them.

3.2. Visual Feature Fusion

Proposed by Hilasaca et al. [HP19], VFF itself is a system designed
for adapting and fusing different feature representations of the same
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data. During its user interaction phase, the system displays projec-
tions of a sample of the data according to each feature set, which
needs to be aligned as to highlight differences in how they describe
the data instances. To achieve this goal, the technique first generates
a projection p using the mean pairwise distances for data points in
all feature sets. Each projection ¢ is then obtained by minimizing

Lt 2

Cff[l‘]z(l—)h)'cstresv WZZ Pnﬁj)_Hp_i_pij)
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where Cgrress|t] is the normalized stress [EMK*19] for projection
t, pj[t] is the position of object j in projection ¢, p; and p; are the
positions of objects j and i in p, d(p;, p;) is the distance between
points i and j in p, and A is the trade-off controlling parameter.

While VFF is fully designed with the intent of merging different
feature sets, its global stress-based optimization makes it not ideal
for tasks that require neighborhood preservation and highlighting
clusters. The alignment component is also more limiting as it at-
tracts all points towards a previously set projection.

4. Generic Projection Alignment Model

Our generic model for projection alignment uses a cost function
modification that can be included in any projection method that em-
ploys gradient descent-based optimization, such as the traditional
MDS [Tor52], force schemes [Ead84, Cha96], SNE-based meth-
ods [VDMHO0S, IM15, PHL*16], among others. In our model, to
make distances comparable between feature sets F|[t], we first ap-
ply the following normalization for data instance F[t];:

F'lt]i=N # 3)
i IF ]2
ensuring that distance between vectors is bounded, despite the scale
of each feature set or the number of attributes they contain. We opt
for the mean of F[f] norms instead of maximum to avoid distor-
tion by outliers that may appear during feature generation. After
that, the projection optimization algorithm is executed, with the to-
tal cost function for each projection 7 given by

C[t] = (1 _7\') pro jection [t] + A 'S Callgnment [l} (4)

where Cpyg jecrion|t] is the standard cost function for the technique
being used (e.g., t-SNE, UMAP, and so on), A is the parameter that
controls how much the alignment interferes in the projection, and 'y
is a scaling parameter. Cyyignment [t] i the penalty for moving away
from other projections, given by

N
Calignment M = % Zd(Pi[l]vp_i) )
i=1
where d( Pilr)> Pi) is the distance between the point p; in the projec-
tion ¢ and the mean position of the same point between all projec-
tions p;. When Euclidean distance is employed, the differentiation
of Cylignment 1s simple and has a low computing cost, resulting in
the following gradient matrix to update the projection p[t]

ch = (1 *x)vcpmjectionm + 7‘7[(1’[[] 713)] (©6)
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The parameter Y was added as a way to compensate for the dif-
ference in magnitude between cost function values in different pro-
jection techniques and bring the norms of projection and alignment
gradients to a similar scale, increasing comparability between tech-
niques and avoiding a trial-and-error process in finding an appro-
priate A value. We set it to HVCpmjec,ion[tm / ||VCa1,-g,,mem [t]||
so the two gradients always have the same norm and A can explic-
itly control the ratio between forces in each point. It can, however,
be fixed to y = 1, just requiring the user to bear in mind that the
projection’s behavior according to A will likely be unique for each
case.

4.1. Multiple Feature UMAP (MF-UMAP)

UMAP has been increasingly adopted for visualization in data anal-
ysis tasks in recent works due to its ability to better represent global
distance relationships (smaller stress values) when compared to t-
SNE, while retaining similar properties [MHM18]. Its optimization
is based on minimizing the cross-entropy between neighborhood
probability distributions in projected and original spaces.

These properties make UMAP a desirable approach to projecting
multiple feature set data, especially relating to neural network vi-
sualization: for instance, global distances contain information such
as similarity between classes, or groups that get closer or further
apart in different observations. Therefore, we chose this technique
to apply the general alignment model and evaluate its capabili-
ties. The implementation was done in Python, using scikit-learn,
scipy and numpy libraries, following the UMAP algorithm pro-
posed in [MHM18]. As the extra terms have low computational
cost compared to the projection optimization itself, UMAP’s per-
formance does not suffer a significant impact.

5. Results

To verify how the aforementioned concepts can be employed in
machine learning visualization, we performed experiments project-
ing activations from hidden layers of ANNs. We used CIFAR-
10 [KH*09] and MNIST [LBBH98] datasets, projecting samples
of 2,000 instances from test data. We used three architectures: a
4-layer MLP with 20 processing units per layer; a CNN with 2
convolutional layers, 2 dense layers (20, 20, 40, and 40 units re-
spectively), Batch Normalization and Max Pooling 2 X 2 between
the convolutional layers; the VGG16 [SZ14] model pre-trained on
Imagenet dataset [DDS*09] without top layers, which were substi-
tuted by two layers of 1,024 dense units. All networks were trained
using Adam [KB14] optimizers, with starting learning rate = 0.001.

First, we observe how knowledge is acquired between hidden
layers. Figure 2 shows projections of activations from the 4 lay-
ers of the CNN over samples from the MNIST data set (convolu-
tional layer activations were captured after the max-pooling layers).
These layers have widely different output sizes (3,920 dimensions
in the first layer and 40 in the fourth), but the resulting projections
are comparable. The separation between certain classes is unclear
in the first layer and gets more explicit in later ones. Observing la-
bel information, we notice classes that the network considers to be
more similar, such as the numbers 4, 7, and 9 in the top region and
3,5, and 8 at the bottom area. This information remains in the last
projections, although with clearer separation.
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Activations of 2000 MNIST test samples over CNN 4-layer network

conv2D 01: 14x14x20 output conv2D 02: 8x8x20 output

dense 01: 40x1 output dense 02: 40x2 output

Figure 2: Projections of activations of 4 sequential layers of a
CNN. The shapes identified by the first two convolutional layers are
similar for specific classes, as they are not fully separated. The last
two organize this information and divide the space among classes.

Our second experiment is to compare different ANNs. Figure 3
shows a comparison between the last layers of CNN and MLP mod-
els, using MNIST data activations. We included additional images
of projections generated using Dt-SNE, to highlight a relevant as-
pect of UMAP-based alignment. Both networks are well-trained
and capable of separating data at the last layer, but the MLP shows
areas (A and B) where a few threads of connection remain between
classes. Dt-SNE projection misses this information.

We calculated the centroid for each class and a distance matrix
between all centroids in all projections, and then obtained the dif-
ference in centroid distances between the projections and the origi-
nal feature data. In MF-UMAP projections, the resulting mean dif-
ference was = 0.3688, while the mean difference in the Dt-SNE
projections was = 0.5015, showing that the first better preserves
inter-group distances.

Finally, we compare VGG16 and CNN models. These models
were both trained using the CIFAR-10 dataset and obtained sim-
ilar results (accuracy scores of 74% and 70%, respectively). The
VGG16 model was frozen and only had the new top layers trained.
Figure 4 shows the resulting projections from the last hidden lay-
ers from both models. Both projections show a central area with
mixed classes, representing instances with uncertain outputs. How-
ever, VGG16 shows more concentrated areas, and is able to isolate
a higher amount of green, red, and brown points, indicating a better
grasp of what composes these classes. This more specialized output
can, however, lead to overfitting.

6. Conclusions

In this paper, we proposed a generic method for producing aligned
projections of multiple feature sets, allowing the visualization to
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Figure 3: Comparison between activations of the last hidden dense
layers of MLP and a CNN using MF-UMAP and Dt-SNE. The CNN
network separates data more explicitly, to the point of overfitting,
but only MF-UMAP is capable of showing areas where separation
improved (A and B).

a) b)

Figure 4: Last hidden layer activations from two ANNs using
CIFAR-10 data. a) CNN and b)VGG16. While their accuracy re-
sults are somewhat similar (0.70 and 0.74, respectively), there are
clear differences in how each network perceives data, and how the
extra complexity present in the VGG16 model can generate more
refined, concentrated outputs.

focus on the actual differences between each set. Our method im-
proves on existing alignment solutions by supporting the flexibility
needed by different projection techniques as they may offer advan-
tages for specific tasks. We used this method to create a variation of
UMAP that enabled alignment and showed its usefulness in neural
network visualization applications. Future research directions may
include developing a quantitative evaluation method to determine
how well different techniques fit in the trade-off between projec-
tion fidelity and alignment, and how alignment interferes with other
quality measures.
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