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Figure 1: In the co-adaptive guidance process, both the system and the user initiate guidance with the goal of learning (adapting their
own models data, task and system/user) or teaching (adapting the models of the other), in order to improve the shared analysis process.

Abstract
Guidance processes in visual analytics applications often lack adaptivity. In this position paper, we contribute the concept of
co-adaptive guidance, building on the principles of initiation and adaptation. We argue that both the user and the system adapt
their data-, task- and user/system-models over time. Based on these principles, we propose reasoning about the guidance design
space through introducing the concepts of learning and teaching that complement the existing dimension of implicit and explicit
guidance, thus, deriving the four guidance dynamics user-teaching, system-teaching, user-learning, and system-learning. Finally,
we classify current guidance approaches according to the dynamics, demonstrating their applicability to co-adaptive guidance.

1. Introduction

Guiding users in their analysis process is an essential part of visual
analytics (VA) systems. Many VA systems provide such guidance in
the form of assistance that helps users to overcome knowledge gaps.
The guiding elements are often fixed parts of the user interface and
typically shown during the entire analysis session. In recent years,
guidance has been re-defined to mean an active, mixed-initiative
process [CGM∗17, CGM19] that provides “just-in-time” facilitati-
on [CAS∗18]. This definition as an active process means that gui-
dance should be provided as a reaction to previous user actions.

Additionally, Collins et al. specify that guidance should be con-
textualized and able to adapt to different scenarios dynamical-
ly [CAS∗18]. While the current definition of guidance captures the
mixed-initiative nature of the process, it does not shed light on how
users and systems adapt over time. To that end, we propose the con-
cept of co-adaptive guidance, which is characterized by initiation of
guidance and adaptation of (mental) models. First, it highlights how
users and systems converge towards a common understanding of the
task and a shared analysis process to reach their goals. Second, it
characterizes typical guidance interactions as learning or teaching,
structuring the guidance process. This paper contributes the concept
of co-adaptive guidance that takes into account which actor initiates

guidance, and which (mental) models change and adapt over time.
The co-adaptive guidance provides a new perspective on the design
space for mixed-initiative guidance, as it cross-cuts the axis of in-
itiation and adaptation with the axis of learning and teaching.

2. Background and Related Work

Both adaptive and mixed-initiative systems have long been studied
in human-computer interaction [Opp94, Hor99]. Early approaches
describe the generation of “knowledge bases’’ for controlling ad-
aptive dialog-based systems [Tiß93] and state that systems should
model the user, the task, the domain, and themselves [KT94]. More
recently, guidance has been identified as a promising attempt to ena-
ble a better collaboration of the human and the computer [CGM19].
For decision support systems, Morana et al. provide design features
for guidance [MSSM17]. In visual analytics, Ceneda et al. define
guidance in terms of a knowledge gap, available in- and outputs,
and the degree of guidance [CGM∗17] as an extension to van Wi-
jk’s visualization model [vW06]. Collins et al. criticize the model
as “too abstract to use practically.” [CAS∗18] and propose a mo-
re process-oriented model based on high-level VA tasks [ALA∗18].
They identify “just-in-time facilitation” as an important goal of gui-
dance” and state that the knowledge of an “intelligent guide” can
be categorized as prior knowledge, session-specific knowledge, and
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Figure 2: Action-reaction pairs form the foundation of the co-adaptive guidance process. Reactions are observed and compared to an
expectation, leading to the adaptation of the data, task or user/system models, and the derivation of new intents. Here, the user initiates the
process (green arrow), and both user and system adapt. The system can also initiate the process, which would then start at the blue arrow. The
grey arrows indicate the guidance dynamics system teaching (ST), user teaching (UT), system learning (SL), and user learning (UL).

situation knowledge [CAS∗18]. Federico et al. present a framework
that incorporates “the function and role of tacit and explicit know-
ledge in the analytical reasoning process.” [FWR∗17] More recent-
ly, Ceneda et al. explicitly state that guidance is a mixed-initiative
process that includes user- and system-guidance [CGM19]. Here,
it is interesting to consider who initiated the guidance and who is
adapting as a result. In human-machine collaboration, such adap-
tation process have been studied [Saw05, GBDL15] and modelled
game-theoretically [NNPS17]. In this paper, we provide an alterna-
tive view on guidance by considering learning and teaching proces-
ses. These processes are linked to the provision of explanations and
should follow principles from pedagogy, such as clarity, elicitation
of responses from learners, and relevance to the learner [Odo14].

Recently, Ceneda et al. (re)defined guidance as an active pro-
cess [CGM19], rendering several (established) approaches “not gui-
dance” and effectively questioning their ability to support users in
the analysis process. In this paper, we call approaches matching this
new definition active guidance to avoid confusion with earlier sy-
stems that employ guidance. Further, the terms “system guidance”
and “user guidance” are ambiguous. They could each describe both
directions of guidance, which can (and has already) led to mix-ups.
We thus propose to disambiguate the terms through including the
target of the guidance in the name: as we further argue in this paper,
the success of guidance can be measured through the adaptation
it induces in the actor being guided. Hence, the source of the gui-
dance can be considered interchangeable when comparing different
guidance schemes. In this paper, we thus define system guidance as
support to the system (by the user or another actor), and user gui-
dance as support to the user (by the system or another actor).

3. Co-Adaptive Guidance Process

While the target of visual analytics is the generation of hypotheses
and the extraction of knowledge [SSS∗14], the goal of guidance is
to support the analysis tasks at hand. Consequently, active guidance
needs to adapt over time, taking the progression of the analysis in-
to account. To illustrate this, we provide a detailed process of this
adaptation in the co-adaptive guidance process, depicted in Figu-
re 2. The interaction process consists of action-reaction pairs →

that are exchanged between the user and the system. Building on the
model by Gotz et al. [GZ09], we define actions as aggregations of
individual events. Actions are, in turn, aggregated into higher-level
user or system intents . Each intent is associated with an expec-
tation that captures if, and how much, the (mental) models of the
recipient should adapt as a result of the performed action(s). Users
and systems interpret observations and expectations with respect to
the available models and, in the case of the user, knowledge.
The result of this interpretation may lead to an adaptation of the
recipient, as well as the generation of new findings .

As expectations are derived from intent, correctly identifying said
intent is an important first step of guidance. It is particularly import-
ant that the provided guidance targets adaptation that matches the
recipients expected model (data, task, user/system). A mismatch bet-
ween model types might lead to the guidance being interpreted as
less successful or lead to an undesired adaptation. Figure 2 shows
an interaction in which all opportunities for interpretation and ad-
aptation have been realized. In practice, many actions will not be
interpreted, e.g., because most current systems lack support for in-
tent identification, and users might choose to focus on their task at
hand rather than analyzing every system action. Figure 2 also shows
grey arrows that indicate the four co-adaptive guidance dynamics
that will be introduced in detail in section 4. In the remainder of this
section, we introduce the concepts initiation and adaptation that
characterize said dynamics.

3.1. Initiation of Guidance at Different Degrees

Mixed-initiative analysis processes are characterized by a range of
interaction possibilities, from suggestions by the different actors,
to direct analysis actions. The suggestion operations follow the
guidance degrees orienting, directing and prescribing introduced by

Ceneda et al. [CGM∗17]. In
this paper, we propose to situa-
te these guidance degrees on
a spectrum that encompasses
other unguided analysis opera-
tions, going beyond providing

suggestions. We argue that actors can also demonstrate their analy-
sis through explaining and teaching their process and rationale to
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their counterpart. This explainable interaction is a step towards un-
derstanding problems to fully specify and further automate them.

We define the initiation of guidance as the action that starts a co-
adaptive guidance iteration at a given degree. Initiation can be trig-
gered by both users and systems (see green and blue arrows in Figu-
re 2). Ceneda et al. identified the degrees orienting, directing and
prescribing for system-initiated guidance [CGM∗17]. Making these
degrees available to users as well enables applications to exploit the
full potential of mixed-initiative guidance. Most existing systems
rely on prescribing user guidance, while some utilize the increased
information content of directing guidance [WDC∗18]. Eye-tracking
devices, among other techniques, would provide the information
necessary for orienting guidance. In current applications, the asso-
ciated guidance processes, however, are typically initiated by the
system, and not the user.

User-initiated guidance remains an under-explored field that holds
potential for investigating efficient human-machine collaboration.
As users convey more information about their tasks, preferences and
needs, systems should become better at providing suitable, bespoke
reactions. Consequently, they could transition from offering orien-
ting guidance to dictating (partial) analysis results, raising questions
of how to trade off agency versus automation [Hee19]. To summari-
ze, considering guidance degrees for user-initiated guidance opens
up an interesting design space that goes beyond considering feed-
back and feedforward [CGM19] for steering the guidance process.

3.2. Adaptation of Knowledge Representation Models

Krogsæter and Thomas state that knowledge-based systems require
a model of the user, of the task, of the domain and of themselves
(system model) [KT94]. According to their definition, the system
model contains knowledge that the system has about its functionality
and limitations. As this information is unlikely to change during
the guidance process, it is not considered here. Instead, Figure 1
shows that users maintain such a system model. Additionally, users
also have a task and domain model. We define adaptation as the
summary of changes to those models during the guidance process.

While all four models store different information, which will be
elaborated in more detail below, the respective adaptation proces-
ses are the same and thus combined into one in Figure 2. Taking
their current knowledge and the derived expectation into account,
agents interpret and observe reactions. The result of the interpretati-
on can then be used as a basis to adapt one or multiple models. For
example, users might become more aware of unexplored regions of
the data or additional system functionality that could be benefici-
al to solving the current task. Systems may capture the task users
are trying to solve more accurately. Additionally, the interpretati-
on of expected and observed reactions is precisely what fuels the
human knowledge generation process, potentially turning hypothe-
ses into findings. As described by Andrienko et al., a “model” is an
appropriate representation of a subject under study [ALA∗18]. We
describe the four models based on this definition of the term.

Data Model — The data model contains information such as da-
ta distributions, descriptive statistics, identified outliers, and rela-
tions and similarities between data points. Typically, systems are
expected to have a more complete data model due to their increased
computational abilities.

User Model — The system stores a specific user model for each
user. This model contains all knowledge that the system has expli-
citly or implicitly gathered about the user. The user model aims to
capture, among others, the users’ knowledge, their level of exper-
tise, potential biases, personal preferences, and personality traits.
Beyond knowledge, user models should also consider cognitive abili-
ties, such as perceptual speed, visual working memory, and verbal
working memory, as personalization can counteract these inter-user
differences in performance [CCTL15].

System Model — The system model is the mental model of the
system that users create during the analysis. It includes knowledge
about the implemented algorithms with their strengths and weak-
nesses, available visualizations, and guidance operations that the
system offers. The system model is created over time through inter-
action with the system, but also influenced by previous knowledge
of similar systems. The system model, therefore, fundamentally in-
fluences the expectations the user has about each task outcome.

Task Model — The task model contains all knowledge that is
necessary to solve the tasks along the analysis process: an order to
execute tasks in, the (hypothesized) solutions, relations and similari-
ties between tasks, and the analysis context.

4. Learn or Teach: Co-Adaptive Guidance Design Space

Initiation and adaptation introduced in the previous section form
the foundation of two central concepts in the co-adaptive guidance
process: learning and teaching. In this context, we define the ac-
tors’ learning intent as the aim to adapt themselves, with the help of
knowledge provided by other actors. Conversely, we define teaching
intent as the aim to induce adaptation in the other actor. Learning
guidance and teaching guidance are initiated with learning intent or
teaching intent, respectively. Learning and teaching are related to
implicit and explicit guidance input [CAS∗18]: intuitively implicit
input can lead to learning, and explicit input could be considered as
teaching. However, in this paper, we place the focus on which actor
initiated or requested guidance, and with what intent. This is especi-
ally interesting as approaches utilizing implicit input for teaching
guidance exist [ITB17]. It is important to note that, after requesting
learning guidance, neither actor learns in isolation. Instead, the feed-
back from the other party is fundamental in resolving the encoun-
tered knowledge gap. Consequently, system learning in guidance
is different from general machine learning. The combination of in-
itiation and adaptation results in four different guidance dynamics
that provide a process-oriented view on guidance in visual analytics:
user teaching, system teaching, system learning, and user learning.
During the analysis process, these dynamics often do not appear in
isolation but can be interleaved, as Figure 2 illustrates. Ultimately,
systems should aim to enable multiple, if not all, dynamics if they
are to be mixed-initiative systems. In the following sections, we in-
troduce each of the dynamics in more detail, followed by real-world
examples that represent these principles particularly well.

4.1. Guidance with Teaching Intent

Teaching guidance is initiated by an actor that aims to adapt the mo-
dels of the other actor. Goals for teaching include providing help in
a given situation in order to facilitate the analysis, informing about
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alternative analysis options, suggesting potential corrections, explai-
ning the current model, or providing a tour as guided exploration.
Typically, systems provide teaching guidance targeting the data and
task models of users. In contrast, users typically teach systems about
the task and their subjective preferences.

User Teaching — User Teaching is the most common form of
guidance in modern systems, where systems
aim to teach users. It directly translates to the
original goal of guidance, which is resolving
encountered knowledge gaps. To that end, sy-

stems, e.g., highlight data points to consider [SGL09] or present
alternative analysis pathways [KPHH11].

Shao et al. [SSES17] support users in exploring large scatter plot
matrices with teaching guidance: based on eye-gaze data, the system
shows plots that are visually dissimilar from those already explo-
red. This guidance aims to teach users an unbiased data model that
considers all data regions and maximizes the amount of informati-
on analyzed per time interval. A similar approach has been used for
gaze-based pattern recommendation [SSV∗18]. LightGuider is a VA
application for creating lighting designs [WSL∗19]. Here, teaching
guidance supports users in efficient exploration of the large model
parameter space, enabling faster task completion by providing alter-
native model parametrizations, while still supporting “manual inter-
vention and artistic freedom.” [WSL∗19]

System Teaching — In system teaching guidance, the user aims
to teach the system their understanding of the
task or data. As such, it is closely related to the
concept of machine teaching [SAC∗17]. Howe-
ver, while machine teaching is typically con-

cerned with providing systems with “labels, features [or] struc-
ture” [SAC∗17], system teaching in guidance also allows systems to
update their user model with, e.g., observed preferences and biases.

In current applications, system teaching is typically realized via
explicit, prescribing guidance: users adapt target sliders [WSL∗19]
or introduce entity relations [EFN12]. Podium, a system for ran-
king multi-variate data points, includes directing guidance from the
user [WDC∗18]. Users teach the system their understanding of the
data by reordering the rows of a data table. From this guidance, the
system infers a feature weighting model that captures “which attribu-
tes contribute to a user’s subjective preference for data.” [WDC∗18]
As this model is transparently made available to users, they can com-
pare expectation and observation to make changes.

4.2. Guidance with Learning Intent

Actors request learning guidance with the intent of verifying or ad-
apting their own models. Beyond asking for help with the analysis,
the goals of learning guidance include probing the other actor’s mo-
dels, verifying hypotheses and understanding the current situation.

User Learning — Users initiate user learning with the goal
of learning about the data, the system, or its
understanding of tasks. This operation can be
considered a “probe”, providing users with

additional knowledge without necessarily advancing the analy-
sis.Clustrophile 2, a system for interactive cluster analysis [CD18],
offers various algorithms and settings. When users request support

with feature selection or algorithm parametrization by toggling the
Help me decide menu, the system provides, e.g., feature relevance
scores or silhouette coefficients for selecting the number of clusters.

System Learning — System learning describes guidance in
which the system requests user feedback with
the aim of improving its user, task or data mo-
del. While this operation may or may not ha-
ve an immediate benefit to the analysis pro-

cess, the gathered information can be used to improve further gui-
dance as it helps systems to better understand users and tasks.

Micallef et al. [MSM∗17] developed an application that supports
users during the generation of machine learning models with small
data sets. The system employs a user model and asks users to refine
features in a subset of the overall features by assigning user relevan-
ce for the overall prediction task. This step is initiated by the system
to learn the user’s domain knowledge, repeating the knowledge eli-
citation step as many times as necessary until the prediction model
returns improved predictions. Further approaches include feedback-
driven view exploration [BKSS14] and DataTone [GDA∗15].

5. Conclusion & Research Opportunities

We have introduced the process of co-adaptive guidance in visual
analytics, building on the principles of initiation and adaptation.
The concept motivates four guidance dynamics, characterized in
terms of learning and teaching. This characterization emphasizes
the mixed-initiative nature of guidance for effective human-machine
collaboration, and operationalizes how systems and users converge
towards a common analysis process. Furthermore, we have argued
for the extension of guidance degrees to cover system guidance. To
conclude, we discuss open challenges through providing an overview
of promising research opportunities for co-adaptive guidance.

Selecting Appropriate Dynamics — In a co-adaptive guidance
process, both users and systems need to employ appropriate gui-
dance dynamics. For novice users, more system-initiated teaching
might be appropriate, while expert users can initiate teaching gui-
dance themselves or respond more faithfully during system learning.
As with selected guidance degree, applications should support chan-
ging dynamics during the progression of the analysis.

Degree of Adaptation — As users provide orienting, directing,
and prescribing guidance, systems have to decide to what extent they
adapt their models and incorporate the available information. Setting
the correct learning rate determines not only both the stability and
the adaptability of the system, but also to what extent users might
regard the guidance as being successful. More generally, future
work should investigate the effects of rejecting provided (teaching)
guidance, reacting by initiating “corrective” guidance instead.

Communication of Intent — As intent plays a central role in
the co-adaptive guidance process, researchers should not only in-
vestigate how it is best communicated, but also how to deal with
failures in intent identification. One possible solution could be the
introduction of explicit learning or teaching modes.

Quality of (Teaching) Guidance — The goal of teaching gui-
dance is to adapt the (mental) models of the recipient. Especially
in user teaching, further research should determine how to capture
the perceived quality of the provided guidance, e.g., in relation to
contained explanations and the amount of adaptation induced.
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