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Figure 1: SpatialRugs (A+B) and MotionRugs (C), all with the same underlying dataset of 151 fish moving in a tank for about 90 seconds.
Excerpts 1-4 show static snippets of the fish turning from the upper right over the lower right to the lower left. Part A shows unmodified
SpatialRugs, where colors can be related to spatial positions (compare colors to Parts 1-4). Part B shows color-smoothed SpatialRugs that
mitigate distorted patterns (outlined in red boxes). Part C shows mover speed encoded in the colors instead of the position. In conjunction,
SpatialRugs and MotionRugs can be applied to relate space to features (e.g., in which areas of A movers are fast or slow as indicated in C.)

Abstract
Compact visual summaries of spatio-temporal movement data often strive to express accurate positions of movers. We present
SpatialRugs, a technique to enhance the spatial awareness of movements in dense pixel visualizations. SpatialRugs apply 2D
colormaps to visualize location mapped to a juxtaposed display. We explore the effect of various colormaps discussing perceptual
limitations and introduce a custom color-smoothing method to mitigate distorted patterns of collective movement behavior.

CCS Concepts
• Human-centered computing → Visualization techniques;

1. Introduction

The visualization of movement data faces challenges in scalability
towards time and amount of displayed movers. Especially, uncover-
ing spatio-temporal patterns in collective movements is challenging
due to large numbers of entities moving similarly over long periods.
To overcome these issues, MotionRugs has been proposed, display-
ing movers in a static, compact fashion [BJC∗18]. In MotionRugs
(Figure 1 C), each pixel represents one mover, while the X-axis
denotes time and the Y-axis represents a 1D spatial aggregation of
all movers derived by spatial linearization. Color can encode any nu-
meric feature of interest, e.g., the speed of the entities. To illustrate,
Figure 1 C shows mover speed; several trends of slowing down (red)
and speeding up (blue) are visible at a glance, while the curvature
reveals spatial dynamics of the collective behavior (e.g., changes in
group orientation and position). Despite the space-efficiency of Mo-

tionRugs, users cannot relate movers to their original locations due to
the spatial linearization, as is possible with other techniques like sim-
ple static plotting or animation [AA13]. This is a major drawback,
as spatial context is often important when analyzing movements, for
example, to explain mover’s behavior using contextual information
such as the locations of food sources for animals.

We combine the space-efficiency of MotionRugs with the space-
awareness advantages of other advanced techniques for trajectory
visualization [AAB∗13,HTC09,TSAA12]. We propose SpatialRugs
(Figure 1 A and B), a technique that applies 2D color maps to dense
pixel visualizations, using colors to express the spatial positions
of movers. We also refine SpatialRugs with a time-aware color
correction to mitigate perceptual issues arising from color space
transformations (see Figure 1 B). We compare the results to a naive
gaussian-based approach and discuss suitable color spaces.
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Figure 2: Upper left: In SpatialRugs, a color space is transformed into a 2D cubic, then adapted to the extent of the moving area. A position is
then encoded using the corresponding color from the color space. Below: Application examples of different colormaps [BSM∗15] to the demo
dataset containing 151 movers showing collective behavior. Left of each visualization, we see the underlying transformed 2D color space.

2. MotionRugs & Collective Movement Visualization
Visual analysis of movement capitalizes on human perception
to uncover patterns over time and space [AA13]. Andrienko et
al. [AAB∗13] provide an example of spatial abstraction for col-
lective movement, transforming physical mover positions to rel-
ative ones regarding a group-centered reference point. Motion-
Rugs [BJC∗18] further reduce the space of the moving entities from
a 2-D to a dense 1-D representation, while still reflecting physical
distances between the movers as accurately as possible. To create the
1-D order from a set of 2-D positions, spatial linearization strategies
such as space-filling curves or spatial index structures [LO93] are
used to retain neighborhoods as good as possible.

In a MotionRug, every mover in one frame is represented by a
single pixel which is colored according to a feature (e.g., speed in
Fig. 1 C). The process is repeated for each time frame, ordering
the slices on the x-axis by time. This process creates the wave-like
patterns in MotionRugs, which allow the identification of spatial
dynamics. The result is a static, dense pixel display [Kei01], showing
the feature development of the movers over time. Alternative dense
representations for spatiotemporal relations exist, for example by
Bergner et al. [BSM∗13] or Luboschik et al. [LRB∗15] in the area
of parameter exploration for spatiotemporal modeling.

In contrast, MotionRugs are primarily used to retain an overview
of the spatial dynamics reflected in curved spatial dynamics patterns,
which can as well be employed to detect trends in features and
feature distributions. However, unlike most other techniques for
trajectory visualization [AAB∗13, HTC09, TSAA12], MotionRugs
lacks spatial awareness, as it does not depict the accurate spatial
locations of the movers. While MotionRugs capture changes in
space and mover orientation over time, it is unable to show where
entities are moving to specifically. This limitation is critical for
many use cases where analysts need to be aware of the region
the entities are moving in. To enhance spatial awareness, while
preserving the spatial efficiency of MotionRugs, we propose an
alternative approach. Below, we propose SpatialRugs, a technique
that reintroduces spatial positions into MotionRugs, eliminating the
necessity for tedious analyses (e.g., clutter-prone static trajectory
plots or time-consuming animations).

3. Retaining spatial readability with SpatialRugs
SpatialRugs is a compact visualization technique for collective
movement data that enhances spatial awareness by projecting a
2D-color space into the 1D-linearization of MotionRugs. Spatial-
Rugs apply a color scale method to the original movement space.
Fig. 2 (upper left corner) demonstrates our approach: (i) We trans-
form the color space to a 2-D cubic representation in order to serve

as a base for the second step. (ii) We transform the 2-D color space
to cover the maximum extent of the spatial dimensions used by the
mover dataset. (iii) We assign the 2-D position of a mover to the
corresponding color of the transformed color map. Spatial positions
are now represented by color, which can be used in conjunction
with pixel-based visualizations of movement, such as MotionRugs,
to encode mover locations. With the colormap reference, users are
able to identify the spatial distribution of entities at a given time.
Fig. 1 shows that the movers come from the upper right corner
(green, first excerpt), take a right turn towards the lower right (blue,
second excerpt), move through the lower middle of the represented
space in purple to the lower (red, third excerpt) and finally middle
left in orange color tones (fourth excerpt). The resulting patterns
allow perceiving the movers’ spatial distribution, while viewers can
also estimate how the movers progress within the color zones. For
example, between excerpts 1 and 2, just a few movers start to move
towards the blue until everyone follows. This behavior is shown as a
cone-shaped transition from green to blue. Consequently, the color
mapping enables to compactly see patterns over long periods of time,
also relating the spatial development to the feature development by
comparing the excerpts (e.g., by relating Fig. 1 A and C).

4. Color Space Considerations
Color space mappings have been applied to represent spatio-
temporal relations before. Northern Lights Maps [JMBK09] map
spatio-temporal properties of movers to an RGB color scale. Pheno-
Vis [LSA∗16] presents color-coded normalized stacked bar charts to
allow comparative analysis over longer time spans. MotionExplorer
[BDV∗17] employs 2D color-coding to highlight temporal patterns
in human motions. Similarly, SpatialRugs applies a 2D color space
mapping to map colors of data points in an abstract visualization
to their real spatial positions. As reflected in the color map task
assessment ER1-3 by Bernard et al. [BSM∗15], a viewer should be
able to distinguish different locations by comparing their color rep-
resentations accurately (I). Also, a viewer has to maintain a mental
map to link colors with spatial positions precisely (II). Finally, our
approach should allow for two or more locations to be compared
with each other (III).

Yet, standard color spaces, e.g., CIELAB, HSV, or sRGB are
mostly organized in three dimensions and usually not of a sym-
metrical shape. Thus, the transformation to a regular 2D form as
required by SpatialRugs is challenging. Also, color perception is
individually different in viewers [DPR∗18], resulting in different
abilities to identify fine-grained differences. Thus, a sensible color
space choice is critical for the effectiveness of SpatialRugs. Many
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Figure 3: Pooling-based color correction. One matrix dimension determines the size of the regarded neighborhood, the other the time ahead to
be considered for the correction. Selecting a use-case appropriate shape and size, the matrix is shifted over each pixel in every time step. Each
step, the colors of the matrix cells are ordered by Euclidean distance in the RGB-space. The median color is then applied to the original pixel.

related approaches have employed 2D colormaps in different use
cases. In an extensive survey, Bernard et al. [BSM∗15] investigate
the capabilities of 22 different 2-D color maps with respect to ana-
lytical tasks and perceptual properties.
Task assessment: Fig. 2 shows a comparison of the color maps taken
from Bernard et al. [BSM∗15] generated with the data described
in Fig. 1. According to the task assessment table of Bernard et
al., colormaps provided by Bremm et al. [BvLBS11], Ramirez et
al. [RAGG12], Steiger et al. [SBM∗14] and Teuling et al. [TSS11]
would be best suitable given our defined tasks I-III. Yet, the task-
based recommendations [BSM∗15] do not regard the perceptibility
of visual structures within the visualization space. As retaining these
structures is important to our approach, we turn to the quality as-
sessment measures [BSM∗15].
Quality assessment: The JND measure describes the “Just Notice-
ably Different Colors” [BSM∗15], indicating how well a colormap
exploits a color space. Here, the colormaps by Simula and Al-
honiemi [SA99] and Guo et al [GGMZ05] perform well, but iterate
over black or white. Such color maps with a low black- or white dis-
tance score work well only in conjunction with backgrounds of the
opposite color [BSM∗15]. As dense pixel technique, SpatialRugs
does not feature intermediate spaces between the data points, using
color maps with black or white color ranges could interfere with
the perceived brightness and saturation of the surrounding colors,
making the color map difficult for our case. The next best color
maps according to the JND feature are Cube Diagonal Cut B-C-Y-R
[BvLBS11] and the Four Corners R-B-G-Y color map [ZNK07].
Transformation assessment: The visual outcome of SpatialRugs is
also determined by the amount of applied transformation to the
color space. Changing the ratio of an original color space in one
axis affects the color discriminability along the same axis. This
holds even if the ratio is changed in both axes. In both directions
(either shrinking or enlarging the color space), color discriminability
suffers, since either there will be less space to represent all colors
a color space can provide, or the same colors are stretched over
a larger space. Yet, since color perception is not necessarily lin-
ear, such effects can only be measured in perceptual studies. While
we acknowledge these effects, we expect that our technique is still
applicable to aspect ratios of up to 16:9.

5. Pooling-based Time Aware Color Smoothing
For some specific use cases, we observe adverse perceptual distor-
tions, especially in the transition areas between primary color tones.
For example, collective movements, as for which MotionRugs is
originally intended, feature a strong focus on the group coherence.

Yet, certain perceptual artifacts can occur in SpatialRugs, when a
part of an otherwise homogeneous group of movers partially pro-
trudes into another color area. Figure 1 shows such a case in excerpt
1, outlined in red, where most movers are in the green quadrant,
with a few extending into the transition area to the blue quadrant,
resulting in a salient blue line (outlined in the red box). Here, the
perceived color distances appear larger than the actual distances of
the blueish movers to the rest of the green group, possibly creating
the false impression of two independent groups moving around. To
mitigate such perceptual distortions, we propose a time-aware color
smoothing technique. Our method regards the mover distribution of
the current and subsequent steps to determine the color correction.
If entities close to each other are located in different color areas,
their respective color is corrected towards the majority.

Our method (seen in Fig. 3) consists of three steps (color col-
lection, pooling, adaption) repeated for every pixel. During initial-
ization (Fig. 3, Step 1), users adjust the pooling matrix, selecting
three parameters: neighborhood size, time frames ahead, and matrix
shape. Step 2 applies the user-defined pooling matrix around the
target pixel and collects the colors of included pixels. In step 3, the
collected pixels are ordered with a stable sorting algorithm (e.g.,
mergesort) on the RGB values. Outlier pixel colors will be sorted
to both ends of the list, while more similar colors move to the mid.
In Step 4, after the sorting, the median of the array yields the most
prominent color value of the collected pixels, and the index pixel
is corrected to the median. Based on the domain knowledge of the
analyst on the dataset and task specifications, the analyst can modify
the parameters in Step 1 to her needs. The neighborhood size pa-
rameter describes the spatial region around the focused pixel in the
vertical axis. For analyzing movers of coherent behavior (e.g., fishes
as opposed to monkeys), the analyst might adjust the neighborhood
size so that stronger (or weaker for monkeys) relationships are incor-
porated. The time frames ahead incorporate the spatial movement
into the future to smooth in the horizontal direction. For observa-
tions that include fast-changing movements, the analyst chooses to
capture fewer steps in time ahead to be able to cover fast changes
of color. Lastly, the matrix shape offers a way to reduce the neigh-
borhood into the future to steer the importance of the developing
spatial region. For movers who tend to behave more coherently over
time, a matrix shaped (no steps) is recommended, while less overall
coherent behavior requires a triangular matrix shape, focusing more
on temporal than spatial coherence. Please refer to our supplemen-
tary material for alternative parameter variations. The code for the
color smoothing is publicly available as Python notebook [Sch20].
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Figure 4: Comparing an unmodified SpatialRug(A) to a smoothed one (matrix size 15x15) (B) and gaussian blur (sigma y, x) (D). C provides
a difference image between A and B and highlights the areas our smoothing focuses on in red. The table shows quantitative assessment results
for time-aware color smoothing(TACS) versus standard gaussian blur(Gauss).

6. Results: Assessing Visual Outcomes

We next elaborate on preliminary results on the effectiveness of
SpatialRugs, discuss color scale choice and smoothing method.
Color scale: In Section 4, we proposed an initial set of color maps
using the work of Bernard et al. [BSM∗15] and defined the tasks
I-III. We further narrow down the selection of well applicable col-
ormaps by visually investigating color space properties (see Fig-
ure 2). First, derived colors should be well distinguishable to relate
them to an accurate spatial location, satisfying task I. The color
maps of Bremm et al. 2 [BvLBS11], Steiger et al. [SBM∗14] and
Teuling et al. [TSS11] are clearly inferior to their competitors for
this property. Second, task II states that the viewer has to maintain
a mental map to associate particular colors with spatial positions.
Here, the color map provided by Simula et al. [SA99] introduce
a black/dark area between neighboring colors in the corners, im-
pacting the perceptual continuity. The color regions by Ramirez et
al. [RAGG12] and Bremm et al. 1 [BvLBS11] are also not linearly
distributed. This leaves the colormaps by Ziegler et al. [ZNK07]
and Guo et al. [GGMZ05] as candidates. Ziegler et al. anchors four
distinctive colors, amongst them three primary colors, to the corners
of the color space, creating a semantic notion of spatial orientation
resembling the natural division of four cardinal directions. Guo et
al. extend the color space radially around a white center. Both ap-
proaches scale well to different aspect ratios, satisfying task III.
Guo et al. enable to encode the center area in white, as well. Yet,
this could interfere perceptually if an additional feature should be
encoded as modification of the color brightness. This only works if
no black or white components are present. To leave this possibility
open, Ziegler et al.’s approach is more suitable. In conclusion, we
expect the color maps by Ziegler et al. and Guo et al. to fulfill our
tasks. The choice between the two is use-case dependent.
Color smoothing: The time-aware smoothing aims to mitigate the
effects of neighboring colors (outlined in red Fig 4 A) by including
the temporal color distribution. In Fig. 4 A and B, we see that the
methods reduce visible outliers while retaining the temporal struc-
tures. The difference image between (A) and (B) (see Fig. 4 (C))
provides preliminary evidence for the value of the applied smooth-
ing method as it only affects the color transition areas, leaving the
visual patterns still crisp and visible. In contrast, the Gaussian blur
(D) creates a fuzzy impression, aggravating accurate interpretation
of colors at a given point by blurring visual structures. A quantitative
assessment of our color-smoothing (table in Fig. 4) shows results of
applied quality measures by measuring the distance to the original,
unsmoothed image. These measures include the root mean squared

error (RMSE) [WMP14], the mean squared error (MSE) [WMP14]
and the structural similarity index [Bov13] (SSIM). We compare
our time-aware color smoothing (TACS) to a standard gaussian
smoothing (Gauss). Similar reference area parameters are chosen to
enable a better comparison of the smoothing methods. Lower RMSE
and MSE values indicate better results, whereas a higher value for
SSIM indicates better similarity between original and smoothed
image. The results indicate that our pooling method outperforms the
Gaussian blur even for small sigmas and large window sizes.

7. Conclusion and Future Work
SpatialRugs uses color mapping to allow users to perceive spa-
tial relations through space-efficient designs. The intended use of
SpatialRugs is in conjunction with other pixel-based movement
visualizations by showing further features the user is interested
in, enabling the relation of space and feature developments (com-
pare SpatialRug and MotionRug in Figure 1). We compared several
color spaces identifying advantages and disadvantages. Further color
space comparisons and color smoothing results can be found in the
supplemental material. We further discussed perceptual challenges
derived by color scales, where movements appear more distant than
in their physical space. To mitigate distortion effects, we proposed a
time-aware color smoothing approach, which we illustrated in some
examples and provided preliminary quality metrics. We expect that
our approach can be applied to non-spatial 2D point distributions as
well, for example, to projections of dynamic datasets.

SpatialRugs also comes with shortcomings: Perceptual limita-
tions and color smoothing introduce spatial errors when trying to
read precise positions, and balancing the parameterization of the
color smoothing for specific use cases can be difficult. These aspects
need to be evaluated, while guidelines for the correct parameteri-
zation have to be explored. In future work, we intend to quantify
the viewer’s perception of our technique and choice of color spaces.
Also, the perceptual implications of our color correction process
have to be tested thoroughly. Instead of using a single color map,
we anticipate that SpatialRugs would benefit from an adaptive color
map approach adjusted to the specific movement distributions and
user task. Finally, we would like to support better detection of move-
ments in semantically interesting regions by allowing users to place
color anchors interactively according to semantic objects or areas.
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