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Abstract
In multivariate time series analysis, pre-processing is integral for enabling analysis, but inevitably introduces uncertainty into
the data. Enabling the assessment of the uncertainty and allowing uncertainty-aware analysis, the uncertainty needs to be
quantified initially. We address this challenge by formalizing the quantification of uncertainty for multivariate time series pre-
processing. To tackle the large design space, we elaborate key considerations for quantifying and aggregating uncertainty. We
provide an example how the quantified uncertainty is used in a multivariate time series pre-processing application to assess the
effectiveness of pre-processing steps and adjust the pipeline to minimize the introduction of uncertainty.

CCS Concepts
•Mathematics of computing → Time series analysis; • Information systems → Uncertainty; •Human-centered computing
→ Visualization theory, concepts and paradigms; Visual analytics; • Computing methodologies → Uncertainty quantifica-
tion;

1. Introduction

In Visual Analytics (VA) research and related fields, the aware-
ness and need to incorporate uncertainty information into the anal-
ysis has increased considerably. This holds true for both a method-
ological, design, and implementation perspective. How uncertainty
was introduced into the data can be distinguished by the dif-
ferent sources of uncertainty, including observations inherent to
the data, generated by models or simulations, or introduced by
the processing or visualization processes [PRJ12, BHJ∗14]. Even
though pre-processing inevitably introduces uncertainty by altering
the original data, these routines are rarely analyzed towards their
impact on uncertainty. When analyzing multivariate time series
(MVTS), pre-processing is an integral part to enable further anal-
ysis. Several approaches analyze uncertainty introduced by pre-
processing [CCM09, WYM12], aggregating uncertainty for indi-
vidual processing steps. When assessing the influence of uncer-
tainty on MVTS, inappropriate aggregation would omit temporal
characteristics that can also be affected by processing (e.g., raster-
ing [BBGM17], or sampling).

When pre-processing MVTS, a common processing pipeline
would consist of multiple steps: (1) imputing missing values, (2)
performing linear interpolation, (3) smoothing the time series by
applying a moving average kernel, and (4) sampling the data to
reduce the size. This implies that first we need to assess how in-
dividual processes influence uncertainty, but also how subsequent
steps of the analysis are affected. To allow this, it is necessary to in-
spect the MVTS and corresponding uncertainties in detail, in order

to audit the impact of single pre-processing routines. Another chal-
lenge regards concatenation of pre-processing steps: Consecutively
executing different data transformation steps also propagates uncer-
tainties throughout the processes. This makes it increasingly diffi-
cult to determine how much uncertainty was introduced at which
step. Adequately monitoring uncertainty during pre-processing al-
lows identifying individual steps that alter the value or temporal
domain inappropriately.

We address the special challenges of uncertainty quantification
when pre-processing MVTS. Our contributions are: (1) A formal-
ization of uncertainty quantification and aggregation, addressing
the particularity of the temporal domain, relevant for MVTS pre-
processing. (2) An elaboration of important considerations for the
quantification and aggregation of uncertainty, along with selected
examples. (3) A usage scenario that shows how uncertainty can be
quantified in a concrete MVTS pre-processing application.

2. Related Work

Uncertainty Quantification. Bonneau et al. [BHJ∗14] defined un-
certainties to be observable from different sources: (1) uncertainty
from sampled data, (2) uncertainty generated by models or simu-
lations, and (3) uncertainty introduced by data processing. Wu et
al. [WYM12] quantified and visualized uncertainty in processing
pipelines as error ellipsoids for every employed routine and com-
municated the extent and propagation of uncertainty throughout
the pipeline in a flow visualization. Correa et al. [CCM09] stated
that uncertainties are propagated and aggregated throughout data
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transformations in parametric modeling of data distributions, but
also stated that these propagation and aggregation steps are appli-
cable on more general data transformation techniques. However,
they encountered the difficulty of analyzing the impact of uncer-
tainty on single dimensions or variables, and motivated analyzing
uncertainty locally throughout the transformations.

Uncertainty in Visual Analytics. Visualization of uncertainty has
disseminated into most application and research domains, like
scientific-, information-, geographic (spatio-temporal) [MRH∗05],
and workflow visualization [WYM12], visual analytics [Mac15],
and time series analysis [GBFM16, WBFvL17]. Uncertainty influ-
ences users’ decision-making, awareness of uncertainty can build
trust and reduce user errors [SSK∗16] but also affect risk assess-
ment and perception [KMRS17]. Sacha et al. [SSK∗16] incorpo-
rated the notion of uncertainty in a knowledge generation model
for visual analytics to determine how it should be adequately gen-
erated and propagated. This underlines the need for appropriate
integration and support of uncertainty in visual analytics. Seipp
et al. [SOGV16] argued for uncertainty information to be avail-
able to the user at any stage in the sensemaking process, includ-
ing pre-processing. Even though recent approaches aimed at inte-
grating uncertainty into pre-processing and data quality assessment
approaches [BBB∗18, BBGM17], the inspection of uncertainty in-
formation produced by models or processing algorithms along a
pipeline remains an open challenge [LFR17].

Visual Analytics and Pre-Processing. Liu et al. [LAW∗18] pre-
sented a framework for steering data quality, and identified that
data pre-processing and analysis can introduce uncertainty. Pre-
processing of MVTS can have unforeseeable effects on the data,
visual interactive support helps users assess the impact on the time
series [BRG∗12]. VA approaches have been employed to determine
quality issues in time series [GAM∗14]. Bors et al. [BBGM17] at-
tempted to derive uncertainty from pre-processing utilizing domain
knowledge of the processing routines and temporal domain char-
acteristics, like temporal granularity and temporal deviation. How-
ever, this approach lacks multivariate aspects and limits uncertainty
quantification to one pre-processing step. We iterate on this ap-
proach of integrating uncertainty in pre-processing. Building on the
aspects addressed by [SSK∗16,BBB∗18,LFR17,PRJ12,LAW∗18],
we condensed a formalization of uncertainty quantification for pre-
processing MVTS.

3. Quantifying and Aggregating Uncertainty

We identified two challenges regarding pre-processing of MVTS:
How can uncertainty be consistently quantified for this type of data,
and how can multiple pre-processing steps be assessed and com-
pared towards their impact on uncertainty. To effectively quantify
uncertainty from pre-processing MVTS and ultimately allow visual
analysis, the time and variables (also referred to as data dimen-
sions) of the MVTS, and the pre-processing steps span a cube of
dimensions (see Figure 1a) that influence uncertainty introduced by
MVTS pre-processing. We elaborate how uncertainty can be quan-
tified and aggregated in different ways, and describe why quan-
tification and aggregation depends on the above mentioned dimen-
sions.

3.1. Quantifying Uncertainties

We define the uncertainty quantification for the three dimensions of
the cube shown in Figure 1a: time and variables of the MVTS, and
pre-processing steps. We refer to a p-dimensional time series data
by X = {x(t1,v), . . . ,x(tn,v)} measured at time point t1, . . . , tn with
variables v = 1, . . . , p (cf. Figure 1b). A pre-processing pipeline
for MVTS consists of m pre-processing steps that modify the
MVTS and introduce uncertainty. Each pre-processing step s takes
a MVTS Xs−1 = {x(t1,v,s−1), . . . ,x(t1,v,s−1)} as input and generates
a modified MVTS Xs = {x(t1,v,s), . . . ,x(t1,v,s)} which is the input of
the next step. X0 is the MVTS as input to the whole pre-processing
pipeline, Xm the resulting MVTS, and Xs with s = 1, . . . ,m−1 the
MVTS between the single pre-processing steps. The natural atomic
representation of uncertainty for such a processing step is deter-
mined by the quantification function u(Xs,Xs−1) that computes the
uncertainty per timestamp and variable u(x(t,v,s),x(t,v,s−1)). How-
ever, depending on the pre-processing operation, the uncertainty
quantification can only be done on a specific level of granularity,
if the temporal domain or the dimensionality of the MVTS are af-
fected. In the following we discuss the different cube dimensions’
dependencies on quantification.

Dependency on Variables. If MVTS variables are individually
analyzed, it is sufficient to determine the absolute value difference
between the input and output time series of a pre-processing step:
uabs(abs(z(t,v))), where z(t,v) = x(t,v,s)−x(t,v,s−1) denotes the value
difference. This results in an uncertainty value that is value domain
dependent, as it needs to be considered in the context of the respec-
tive scale of the value domain. Thus, if uncertainties of variables
with different value domains are to be compared or assessed simul-
taneously, normalized relative differences need to be determined
instead: urel(z(t,v)) =

z(t,v)−µz
σz

, where µz is the mean difference and
σz the deviation. This way, the influence of multiple variables on
the uncertainty at time x(t,s) is comparable for any v. If the uncer-
tainty of each variable cannot be quantified for single time points,
the uncertainty needs to be computed for single variables across
all time points ut(x(v,s),x(v,s−1)). This is for example the case, if
the temporal space is modified, like temporal sampling or rastering
(only uv is applicable).

Dependency on Time. The quantification of uncertainty over sin-
gle time points and dimensions u(x(t,v,s),x(t,v,s−1)) allows to iden-
tify time points or time ranges that have a high, low, or normal
level of uncertainty in the value domain. If the uncertainty of time
points cannot be quantified for single variables, the uncertainty
needs to be computed for single time points across all variables
uv(x(t,s),x(t,s−1)). This is for example the case, if the time series
dimensionality is altered, e.g., by dimensionality reduction routines
(only ut is applicable). In the case of aggregating over time (cf. Sec-
tion 3.2), e.g., for rastering or sampling a time series to a coarser
temporal granularity, the uncertainty introduced in the temporal do-
main needs to be considered in the quantification. This can be done
by computing the relative or absolute temporal differences ∆t of
all time points that are merged in the raster intervals of the coarser
granularity level, similarly to computing relative value differences
formalized for variables, but in the temporal domain.
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Figure 1: Illustration of quantification of uncertainties and aggregation on values and uncertainties. (a) shows the three variables time,
variables, and processing steps. (b) represents a single processing step slice with the dimensions time and variables together with the
uncertainty aggregation, either across time or variables (shown as red boxes). (c) indicates the different aggregation paths within single
processing step slices (c1, c2) and across all steps (c3).

Dependency on Pre-Processing Steps. Each pre-processing
method has different effects on the introduced uncertainty. How-
ever, these effects can be derived when taking into account the er-
ror that is introduced by the specific method and its parametriza-
tion. Moreover, this on average introduced error can be estimated
(e.g., moving average changes the value domain consistently). We
formalize the introduced uncertainty accordingly: uerr(x(t,s)) =
ferr(x(t,s),k), where ferr is an error function for quantifying un-
certainty, and k = {k1, . . . ,kl} is the current parameter vector of
the pre-processing method.

3.2. Aggregating Uncertainties

Figure 1c illustrates the different types of aggregation of uncer-
tainties over all processing steps. As with quantifying uncertainty,
aggregation can be applied on all of the cube’s dimensions: time
and variables of the MVTS, and pre-processing steps. Generally it
is advisable to quantify uncertainty at the finest granularity level
and aggregate to coarser granularities if necessary. In the follow-
ing we use a general aggn

i=1(·) function to indicate that there are
multiple different aggregation methods that could be applied. More
specifically this can be a simple summarization ∑

n
i=1(·), a multipli-

cation ∏
n
i=1(·), or other statistical aggregations of uncertainty, like

the mean uncertainty µ(u), mean squared uncertainty µ(u2), or root
mean squared uncertainty

√
µ(u2).

Aggregating by Time. Quantifying uncertainty on timestamp
granularity is not always beneficial. Analogous to visualization of
large MVTS, aggregating uncertainty to a coarser temporal gran-
ularity allows maintaining a representative dataset if the scale
of the original data is too large. Aggregating uncertainty can be
done on different levels of temporal granularity (cf. Fig. 1c1).
To remove the temporal dimension from the quantified uncer-
tainty, we can aggregate over the entire time dimension u(x(v,s)) =
aggn

t=1(u(xt,v,s,xt,v,s−1)). This allows an abstract representation of
uncertainty without time, e.g., a single value of uncertainty for an
entire time series variable v, and pre-processing step s.

Aggregating by Variables. Analyzing uncertainty of individual
variables allows detailed inspection of effects on the value do-
main. However, variables can be affected differently by pre-
processing. Uncertainty can be aggregated by variables u(x(t,s)) =
aggp

v=1(u(xt,v,s,xt,v,s−1)) to determine a single value of uncertainty
for these variables, e.g., µ(u(x(t,s))) (cf. Fig. 1c2).

Aggregating by Pre-Processing Steps. To obtain an overview
of uncertainties for one step s of the pre-processing, we com-
pute the uncertainty of each pre-processing step u(xs). Compar-
ison of different steps can be done on different levels of aggre-
gation, by variable u(x(t,s)) = aggp

v=1(u(xt,v,s,xt,v,s−1)) or time
u(x(v,s)) = aggn

t=1(u(xt,v,s,xt,v,s−1)). However, it is also possible to
aggregate over a whole pre-processing pipeline, to assess the intro-
duced uncertainty of a sequence of pre-processing steps u(x(t,v)) =
aggm

s=1(u(xt,v,s,xt,v,s−1)).

To enable more distinct assessment, aggregation can be nested
consecutively. Aggregating by variables allows comparison over
time u(x(t)) = aggp

v=1aggm
s=1(u(xv,t,s,xv,t,s−1). This allows more

detailed inspection if the time series was affected by pre-
processing uniformly. Conversely, aggregating by time allows com-
parison over variables u(x(v)) = aggn

t=1aggm
s=1(u(xv,t,s,xv,t,s−1)).

Ultimately, aggregating over time, variables, and pre-processing
steps produces a single value of uncertainty for the entire pre-
processing pipeline u(x) = aggn

t=1aggp
v=1aggm

s=1(u(xv,t,s,xv,t,s−1))
(cf. Fig. 1c3).

4. Usage Scenario: Cleansing and Reduction of MVTS Data

The MVTS processed in the scenario contains weather experiment
data measured in Antarctica [RLKLI12] and used by our collabo-
rator for downstream analysis. We exemplify the use of uncertainty
quantification in a visual analytics tool for pre-processing of MVTS
presented by Bernard et al. [BHR∗19] to support analysis scenarios
with uncertainty on different aggregation levels (Please be referred
to this work for a detailed description of the interactive VA ap-
proach). Among others, it enables the assessment of (a) uncertainty
introduced by a pre-processing step (cf. Figure 2), (b) uncertainty
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Figure 2: Analysis of a Moving Average pre-processing step: Mul-
tiple MVTS dimensions are visualized with three different param-
eter settings (top), for each parameter uncertainty is aggregated
by dimensions and time to give three boxplots over time (bottom).
Reprinted from [BHR∗19].

Figure 3: Assessment of uncertainty introduced by a sampling rou-
tine for one dimension, applied with two parameter values (purple,
orange). The purple parametrization is too coarse, introducing a
considerable amount of uncertainty. Reprinted from [BHR∗19].

influencing individual and multiple variables, and (c) uncertainty
influenced by alternative pre-processing parameter values (cf. Fig-
ure 3). For all steps and parameters used in the following examples,
uncertainty is quantified as the normalized relative difference on a
timestamp and individual variable level, urel(z(t,v)).

First, we highlight how the collaborator applies a smoothing rou-
tine to remove noise and reduce the effect of outliers, i.e., to im-
prove data quality. Figure 2 shows how the effect of the smooth-
ing routine can be assessed for four dimensions and three different
parametrizations (gray, blue, orange linecharts). Using aggregation
by variable allows assessment of the average uncertainty across all
selected dimensions, aggregation by time allows analysis of the un-
certainty introduced for cyclic patterns observed in the first two di-
mensions. The orange boxplots on the bottom (cf. Fig. 2) indicate
a considerably higher uncertainty with this parametrization and re-
moves the cyclic patterns entirely. The collaborator proceeds by
adding a sampling routine with two sampling window sizes, aiming
for a more compact MVTS. To grasp the effect of the sampling rou-
tine at a fine-grained level, the collaborator inspects the sampling
results (cf. Fig. 3) of one individual dimension of the MVTS (top
purple and orange linecharts) and the corresponding uncertainties
(bottom symmetric area charts), meaning we don’t apply aggrega-
tion in the variable domain. It shows that the purple sampling rou-
tine introduces excessive uncertainty, due to a too coarse sampling
kernel. Finally, the collaborator wants to validate the pipeline as
a whole. Again, an adequate level of aggregation is used to exhibit
the uncertainty of several routines. The uncertainties are aggregated

over all variables, but shown for every pre-processing and time
stamp individually. That way, the collaborator can identify which
routines introduced the largest amount of uncertainty in compari-
son to the others.

With the visual analytics approach building upon our method-
ology, the collaborator was able to conduct the uncertainty-aware
pre-processing of MVTS. She was able to make informed decisions
in the creation as well as in the validation phase. Without a visual-
interactive approach, selection adequate parameters would have re-
quired iterative comparison of intermittent processing results.

5. Discussion & Conclusion

In this paper we presented a formalization for quantifying and
aggregating uncertainty that was introduced by pre-processing of
MVTS and we identified the dimensions that affect the way uncer-
tainty needs to be quantified and aggregated.

We distinguish uncertainty at the time stamp level, the data vari-
able level, as well as uncertainty introduced at each step of a data
pre-processing pipeline. We argue that uncertainty should be quan-
tified for the finest granularity level possible (i.e., for each time
stamp, data variable, and pre-processing step), as aggregated un-
certainty values are not sufficient for all analysis tasks. If coarser
uncertainty information is required to support an effective analy-
sis, this fine-grained uncertainty can subsequently be aggregated.
On the other hand, it is not always possible to quantify uncertainty
at the finest granularity level. Some pre-processing methods trans-
form the granularity of the MVTS, such as dimensionality reduc-
tion or temporal sampling. This change of granularity needs to be
considered in the employed uncertainty quantification method, as a
simple comparison of input and output values of the pre-processing
step is not feasible in such cases. Moreover, we elaborated on the
different possibilities for uncertainty aggregation. Finally, we pre-
sented a use case of how our formalization can be applied to quan-
tify uncertainty in a visual interactive pre-processing environment
and how different uncertainty aggregations support analyzing and
fine-tuning of the pre-processing pipeline.

While the visual representation of uncertainty information and
the need to include information about the uncertainty of the data
that is visualized into VA environments gains awareness, it is of-
ten assumed that the uncertainty information is given. Yet, almost
any data analysis is preceded by data pre-processing which also
introduces considerable uncertainty into the data. Thus, we formal-
ized the quantification and aggregation of uncertainty from MVTS
pre-processing. This might be done to evaluate the appropriateness
of the pre-processing pipeline as such, but also to include this un-
certainty information into the final data representation to foster in-
formed reasoning. Our formalization helps visualization designers
to understand and consider relevant aspects in this context.
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