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Abstract
A Multigraph is a set of graphs with a common set of nodes but different sets of edges. Multigraph visualization
has not received much attention so far. In this paper, we introduce a multigraph application in brain network data
analysis that has a strong need for multigraph visualization. In this application, multigraph is used to represent
brain connectome networks of multiple human subjects. A volumetric data set is constructed from the matrix
representation of the multigraph. A volume visualization tool is then developed to assist the user to interactively
and iteratively detect network features that may contribute to certain neurological conditions. We apply this
technique to a brain connectome dataset for feature detection in the classification of Alzheimer’s Disease (AD)
patients. Preliminary results show significant improvements when interactively selected features are used.

Keywords: graph visualization, multigraph, volume rendering, brain imaging, feature detection.

Categories and Subject Descriptors (according to ACM CCS): Visualization [Human-centered computing]: Visual-
ization application domains—Visual analytics

1. Introduction

With the proliferation of network applications in all aspects
of modern society (e.g. WWW, social networks, transporta-
tion networks, etc.), graph or network visualization becomes
increasingly important. While there have been a large num-
ber literature in information visualization dedicated to the
theory and practices of graph/network visualization, the vi-
sualization of multigraphs has received very little attention.
This is a somewhat curious phenomenon as multigraph is a
very common type of data sets in many network related data
analysis applications.

A multigraph [HWYS14] is a set of graphs that have a
common set of nodes but different sets of edges. Many net-
work problems can be modeled as multigraphs. For exam-
ple, in social networks, the study of network communities
may require the understanding and analysis of the different
types of connectivity (e.g. different time periods, or differ-
ent modes of communications). Another important applica-
tion is in medical and clinical research. For example, when
studying human brain networks, network data from multi-
ple human subjects may be collected for analysis or classi-

fication of neurological diseases. This set of brain networks
from mul-tiple subjects is a multigraph as humans have sim-
ilar brain structures. In this paper, we will show that proper
multi-graph visualization can help the analysis process by
generat-ing more salient visual features.

Human connectomics [BS09] studies how the human
brain is wired and how its function is affected by the
con-nectivity pattern using multi-modal neuroimaging data.
The human brain is a complex network of approximately
1010 neurons linked by 1014 synaptic connections [Wik16].
Given such an unprecedented complexity, we are facing crit-
ical computational challenges for comprehensive mapping
and analysis of brain connectivity, across all scales. Research
in this area has largely focused on extracting brain networks
from structural, functional and [CGM∗12] [Spo11]. The vi-
sualization and related visual analytics of this network has
not been well studied.

In this paper, we focus on a specific visual connectomic
analysis application: feature classification for brain diseases.
Visual feature classification applies feature visualization
techniques to provide discriminating power for data classifi-
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cation. By visualizing and comparing the multigraphs of
subjects in different classes, we are able to detect and ex-
tract network features that are more salient in differentiating
data groups for diagnosis and analysis.

In the rest of this paper, related work will first be dis-
cussed in Section 2. The application dataset will be de-
scribed in Section 3. In Section 4, we will describe our multi-
graph visualization approach and its visual interface for fea-
ture detection. The result of this technique applied to a test-
ing data set for Alzheimer’s Disease patients will be pre-
sented in Section 5. Conclusions and future work will be
given in Section 6.

2. Related Work

Human brain connectomics involves several different imag-
ing modalities that require different visualization techniques.
Margulies, et al [MBWG13] provided an excellent overview
of the various available visualization tools for brain anatomi-
cal and functional connectivity data. A tool called Connec-
tomeExplorer [BAAK∗13] can also provide visual explo-
ration of brain connectome data from microscopic images.
In brain connectomics, connectome network’s connectivity
data are usually visualized as graphs. Graph visualization
has been extensively studied in information visualization.
For connec-tomics application, the networks can be either
visualized as separate graphs, away from the anatomical
context [SSSB05] or embedded into the brain anatomical
context [ABHR∗13] [ZEM∗12] [XWH13].

As a subfield of information visualization, graph visuali-
zation has been extensively studied. Surveys of classic graph
visualization techniques can be found in [HMM00] and
[Tam07]. In addition, there are also various types of devia-
tions from the classic network structure in graph visualiza-
tion such as node clustering, multivariate attributes and spa-
tial constraints. Detailed literature reviews of these types
of multifaceted techniques is given in [HSS15]. However,
few techniques have been developed for multigraphs. Al-
though multivariate graphs [RMM15] [HSS15] can contain
multiple edges for pairs of nodes in the same graph, they
do not pro-vide properties that defined by the structures of
a complete graph. For example, a node-link visualization
method for multigraph and related interactions is proposed
in [HWYS14]. But it is really focusing on only multi-edge
graphs, i.e. the same graph with multiple edges.

A somewhat similar problem is the visualization of dy-
namic graphs [BBDW14] [KKC14]. But since the graph
structures often change with time, the focus of the visualiza-
tion algorithms is different. In the case of static graph struc-
tures in dynamic graphs, the problem becomes similar to a
multigraph problem. In [BPF14], a matrix cube technique
was proposed to stack multiple graphs together to form a
cube for the visualization of the time-varying changes of
the graph edges using information visualization tools such

as slicing, small multiples, and color coded projection. Alt-
hough the graph stacking strategy is similar to our approach,
the visualization method for the stacked graphs are very dif-
ferent as we further blur the cube into a volume data set and
apply interactive volume rendering for feature detection.

Another type of related work is feature extraction by
visu-alization. While feature visualization has been an ac-
tive topic in scientific visualization [RPS], using interac-
tive visuali-zation for feature selection to support data anal-
ysis has not been widely studied. Some preliminary work
has shown promises in many science and engineering ap-
plications such as flow dynamics [PVH∗03], spatiotempo-
ral GIS [WSH13], bioinformatics [MN06], and neuroimag-
ing [STM15].

3. Brain Network Data Set

Our application is the human brain network data anal-
ysis for Alzheimer’s Disease classification using an
MRI and diffu-sion tensor imaging (DTI) dataset from
the Alzheimers Dis-ease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). An overview of the brain con-
nectome network construction process based on MRI and
DTI data is shown in Figure 1. More details of this pro-
cess, including the parcellation and tractography algorithms,
can be found in [LFG∗15]. The pipeline is divided into three
steps: (1) Gen-eration of regions of interest (ROIs), (2) DTI
tractography, and (3) connectivity network construction.

ROI Generation: Anatomical parcellation is performed
on the high-resolution anatomical MRI scan of each subject
to obtain 68 gyral-based ROIs, with 34 cortical ROIs in each
hemisphere. These ROIs can be further subdivided so that
brain networks at different scales can be constructed.

DTI Tractography: The DTI data are analyzed and pro-
cessed for fiber tracking using FACT (fiber assignment by
continuous tracking). A spline filtering is applied to smooth
the tracks.

Network Construction: Nodes and edges are defined in
constructing the weighted, undirected network. The weight
of the edge is defined as the density of the fibers connecting
the pair.

Figure 1: Creation of structural connectivity networks.

In our study, the brain connectome data were collected for
104 subjects in 3 categories: HC (Healthy Control, 43 sub-
jects); MCI (Mild Cognitive Impaired, 42 subjects) and AD
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(Alzheimer’s Disease, 19 subjects). For each subject, ana-
tomical parcellation is performed on the high-resolution T1-
weighted anatomical MRI scan. 234 gyral-based ROIs were
obtained for each subject. These ROIs can be further divided
into smaller ROIs so that brain networks at different scale
can be constructed. Nodes and edges are defined to construct
the weighted, undirected network. The weight between each
pair of nodes is defined as fiber density, which is number of
fiber tracks divided by mean volume of the two ROIs. Con-
nection of two ROIs is defined as the end points of the fiber
falling in both the two ROIs.

The brain connectome network data from the 104 subjects
are 104 graphs. Since all the subjects share the same parcel-
lation, they have the same set of node labels (the brain ROIs)
but different connectivity (edges) between the nodes as the
fiber densities are different for different subjects between the
same pairs of ROI labels. Thus, it is a typical multigraph
problem.

4. Multigraph Visualization and Interaction

A key step in the data analytics process is feature selection,
which is usually a highly technical process hidden from the
end user. There is, however, a need for transparency in the
feature selection and model creation process, not only for
feature interpretability, but also because end user input is
highly valuable. Human intuition, knowledge, and percep-
tual ability to identify patterns are the primary driving force
of visual analytics. To this end, interactive data visualization
plays a central role.

The goal of the visualization here is to show salient net-
work features that are the most effective in differentiating
subjects in these three categories: HC, MCI and AD. Each
connectome network can be represented as an adjacency ma-
trix. If we stack together the matrices of a group of subjects,
it forms a volume dataset. Naturally, the subjects in the three
categories can be grouped together to form three vol-ume
datasets. We then generate volume renderings of these vol-
umes side-by-side to detect salient features which are both
common within groups and different across groups.

To visualize a multigraph volume, we first need to blur the
sparse matrices to generate a cloud-like volume data. This is
to enhance the influence of the discrete edges in the adjacen-
cy matrices so that volume rendering can be visually more
effective. We apply Gaussian filters to “splat” each point to
nearby voxels. Figure 2 shows an example of a graph ma-
trix before and after the Gaussian filtering. VTK is then used
to carry out the volume rendering. Opacity and color transfer
functions are designed for the users to interactively adjust the
visual effects to look for salient features. Figure 3 shows the
interface of this visualization tool. The right column shows
all the individual graph matrices. The left column shows the
averages of all the slices (matrices) within each category.
The middle column shows all volume rendering results of

Figure 2: A graph matrix before & after Gaussian filtering.

the three multigraph volumes. The trans-formations of the
three volume renderings are synchronized to facilitate inter-
active visual comparisons. 3D interactions such as rotation
and scaling, can be applied to the volume rendered images
to compare these 3 groups of subjects. Users can then in-
teractively identify regions that show the most differences
between the three categories, as well as consistencies within
their individual groups. As shown in Figure 4, such regions
will be selected on the interface as submatrices. Since this
is an interactive process, it is primari-ly the users’ subjective
decisions to identify places where they think they see signif-
icant differences. This process may also include change of
transfer function for better visual clarities.

Figure 3: The interactive feature selection interface.

Results from Figure 4 indicate that differences between
the three types of networks cannot be easily discovered from
statistical averages, as they do not seem to show on the aver-
aged images. The selected submatrices will then be further
calculated to form the feature vector for classification analy-
sis.

5. Feature Analysis

In order to compute a set of features for analysis, the
subma-trices identified interactively are processed by Prin-
cipal component analysis (PCA). PCA is applied to the fea-
tures defined by the elements in each submatrix individually.
The set of all such principal components (PCs) form a col-
lective feature vector for further classification analysis.
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Figure 4: The interactive feature selection interface.

Support Vector Machine (SVM) is used to construct
classi-fiers. To do so, a supervised classification algorithm is
im-plemented. A 3-fold cross validation approach is applied.
For each category, 2/3 of the total subjects are randomly se-
lected and used as training data and the remaining 1/3 are
kept for testing. This process will then be repeated 3 times
with different randomly selected subsets, and the results are
averaged over the 3 rounds. Our training set has 13 subjects
from AD, 29 subjects from HC and 29 subjects from MCI.
The test set has 6 subjects from AD, 14 subjects from HC
and 13 subjects from MCI. To avoid overfitting, we limit the
feature vector to have about 25 features.

In order to compare with results without the visual feature
selection, we also apply PCA on the entire 234x234 multi-
graph matrices. The resulting PCs will then be selected using
a standard best first feature selection algorithm [XYC88].
This will reduce the feature set to 25 features (same as the
visually selected features).

The training results from the SVM are then applied to
the test set for validation. Table 1 shows the comparisons
of the three pairwise classification results using both visu-
ally de-tected features and automatically detected features.
There are significant improvements in all three tests using
the visually detected features.

6. Conclusions

We have presented a multigraph visualization framework for
interactive feature detection using brain image data. Treat-
ing multigraph as a volume for interactive feature detection

Table 1: Test results of three classifiers: AD vs HC; AD vs
MCI; HC vs MCI.

Clinical diagnosis
Visual-features Auto-features

AD(+) AD(-) AD(+) AD(-)
AD 5.3 0.7 4 2
HC 2 12 5 9

Overall: 87.0% Overall:65.5%

Clinical diagnosis
Visual-features Auto-features

MCI(+) MCI(-) MCI(+) MCI(-)
MCI 9.7 3.3 8 5
HC 2.3 11.7 5 9

Overall: 79.1% Overall: 62.9%

Clinical diagnosis
Visual-features Auto-features
AD(+) AD(-) AD(+) AD(-)

AD 4.7 1.3 4 2
MCI 3 10 5 8

Overall: 77.6% Overall: 64.1%

is a novel approach, and the results look promising. Interac-
tive feature detection through data visualization effectively
bridge visualization and data mining, and is able to take ad-
vantages of both human perceptual abilities and the power
of data mining algorithms. We believe this a more powerful
and efficient paradigm for visual analytics than pure user-
centered visual data manipulation.

In the future, we would like to develop a richer set of in-
teractive operations with the multigraph visualization plat-
platform, including perhaps the interactive visualization of
analysis results to evaluate each news selected feature vec-
tor.
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