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Abstract
The Visual Analytics (VA) approach has become an important tool for gaining insights on various data sets. Thus, significant
research has been conducted to integrate statistical methods in the interactive environment of VA where data visualization pro-
vides support to analysts in understanding and exploring the data. However, much of the data explored with VA is inherently
uncertain due to limits of our knowledge about a phenomenon, randomness and indeterminism, and vagueness. The Bayesian
Network (BN) is a graphical model that provides techniques for reasoning under conditions of uncertainty in a consistent
and mathematically rigorous manner. While several software tools for visualizing and editing BNs exist, they have an evident
shortcoming when spatial data. In this study, we propose a Visual Analytics-enabled BN approach for reasoning under uncer-
tainty. We describe the implementation procedure using an example of heterogeneous data that includes locations of security
surveillance cameras installed in public places.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Line and
curve generation

1. Introduction

Uncertainty is a natural outcome of scientific research and it is an
inevitable characteristic of data handling processes; therefore, vi-
sualization of data uncertainty has been the focus of a substantial
body of research. However, the research outcomes have been lim-
ited by a lack of a complementary focus on uncertainty in reasoning
processes [Mac15]. The goal of analytical reasoning is to gain in-
sight from data, and Visual Analytics (VA) facilitates this process
and enables human reasoning about complex problems through vi-
sual interfaces and computational methods that can process large,
messy, and heterogeneous data. The reasoning process with such
data sets must typically cope with uncertain conditions. In the cur-
rent research we adopt an uncertainty definition from Bayesian
statistics, where it is associated with such factors as ignorance (due
to limits of knowledge about a phenomena); randomness and inde-
terminism (as not all events are determined by causal relationships
and there is always room for physical randomness); and vagueness
(as statements we make are often vague) [KN10].

Over the last decades there has been a growing interest in
Bayesian inference due to increased recognition that it is an ef-
fective method for supporting decision-making practices. Vari-
ous methods for representing and reasoning with uncertainty have
been developed, including the fuzzy set theory, formal logics
[Blo06], probabilistic clustering [LLZ∗17], and Bayesian Net-
works (BNs), also called belief networks and causal probabilistic

networks [SPK98]. Several studies have indicated that BNs provide
an effective approach to assess data uncertainty; therefore, the use
and visualization of BNs has received explicit attention. The BNs
graphically represent uncertain quantities and decisions that reveal
the probabilistic dependencies among the variables and the related
information flows [VC16]. The most relevant advantage of BNs is
that they provide an effective mechanism to deal with uncertainties
and information from different sources, such as expert judgment
and observable patterns, and are able to consider conditional de-
pendencies in data. The efficiency of Bayesian methods lies in pro-
viding uncertainty estimates about the given alternatives, and the
fact that human reasoning can be integrated makes it a promising
method for the implementation within VA.

In the current contribution, we present a VA approach for spa-
tial, heterogeneous data analysis that uses integrated BNs to support
reasoning about spatial patterns in the context of uncertain condi-
tions. More specifically, we address the issue of decision-making
under uncertainty when performing a classification task. When de-
cision makers deal with classification problems, they often quan-
tify the likelihood of a given event on the basis of their personal
knowledge. This study proposes a technique that facilitates interac-
tion between the analyst and the BN’s probabilistic model through
VA interface supporting expert input. The classification task is con-
ducted using locations of surveillance cameras in public places in
the city of Moscow. The provision of multiple kinds of surveillance
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cameras may increase the chance that if anything happens in a lo-
cation it will be possible to: (a) know that it happened, and (b) gain
some information about what happened and perhaps who was re-
sponsible. The application would also allow an analyst to explore
the likelihood of an undesirable/unsafe situation happening with-
out it being noticed (or without it being noticed soon enough to
do anything about it). Interactive visualization enables an analyst
to participate in the data exploration and reason about the informa-
tion provided by the data considering the state of uncertainty that
is inevitably incorporated during the data exploration.

In the next sections, we review relevant literature and introduce
the VA approach realized by the integration of BNs into a VA inter-
face for the analysis of video camera data from Moscow. The paper
presents results of the integration of Bayesian statistical methods
for reasoning about the potential to monitor behavior in places ef-
fectively through integration of camera data.

2. Related work

Recent reviews of literature focused on visualizing uncertainty
of spatial data [MRH∗05, SRK16] have shown a variety of ap-
proaches, including glyphs, isolines and isosurface, grid structures,
3D, and choropleth maps. However, the uncertainty visualization
perspective (as evident in work to date) deals primarily with visu-
ally signifying ambiguous data rather than with reasoning under un-
certainty [Mac15]. At the same time, well informed decisions with
a spatial context depend essentially upon adequate data, knowledge
of uncertainty, and the ability to reason about it.

As several studies have indicated, BNs provide an effective ap-
proach to access data uncertainty; therefore, the visualization of
BNs has received substantial attention. [ZRNG99] reported on the
utility of temporal order, color, size, proximity (closeness), and an-
imation techniques for mapping cause-effect relationships in a BN
model. [CSLG05] proposed using heat maps for visualizing the
conditional probability tables. [CMS11] proposed a method to sup-
port expert analysis of BN models using a “thought bubble line” to
connect nodes in a graph representation and their internal informa-
tion at the side of the graph. [CE17] introduced two visualization
techniques: inference diffs, for comparisons of effects of evidence
using concentric pie and ring charts, and relevance filtering to guide
the user to variables of interest in the model.

Despite the fact that the BNs are a commonly applied modeling
technique in different applications, the visual exploration is limited
to cause-effect relationships among the variables, and only scant
attention has been paid to the development of visualization support
for the spatial component of the data. Although people are typi-
cally poor at numerical reasoning about probability, human thought
is sensitive to subtle patterns of qualitative Bayesian, probabilistic
reasoning [OC09]. Therefore, the development of visual interfaces
that allow users to iteratively deal with BN analysis in a spatial con-
text might enhance the usability of this method and open new per-
spectives for application of Bayesian reasoning in GIScience and
cartography.

Previous research has demonstrated the potential of developing
uncertainty-aware VA. In one recent study, integration of uncer-
tainty (confidence) visualization with computational methods in

a VA application demonstrated how confidence in an estimate on
multiple interacting factors (based on weather predictions) can be
simultaneously visualized [KTB∗18]. One of the first examples of
a framework that merges Bayesian statistics and VA is proposed
by [HLH15]. Their solution focuses on the human-computer inter-
action that helps experts synthesize information in the data, interact
with the data, and guide automated, analytical procedures. Another
application is described in [SDC14], where the authors presented
an analytical framework called Abuse User Analytics (AuA) aim-
ing to provide information about the behavior of online social net-
work users. The AuA processes data users’ discussions, and renders
information about users’ abusive activities. The analysis and visu-
alization implemented within AuA utilize BNs to model the users’
choices and monitor changes in their behavior in text-based com-
munities. Hence, the VA approach might facilitate abstraction of
numerical details from Bayesian statistics and represent the model-
ing through qualitative characteristics that promote human reason-
ing, and yet preserve the semantics underlying Bayesian inference,
and BNs in particular. The implementation of uncertainty-aware
VA using BNs that considers spatial data contexts, seems to offer
potentially useful tools for spatial data analysis.

3. Materials and Methods

3.1. Data

Recent open data initiatives have transformed the availability of
and ease of access to high-quality spatial data and have opened up
new perspectives for analysis and data visualization. The current
research leverages data acquired from the open portal of the mu-
nicipality of Moscow. The primary input information includes data
from video surveillance cameras in the city installed in: (a) mass
gathering places, (b) common areas of residential complexes, and
(c) public points of police assistance. The point data from the cam-
eras was aggregated to a hexagonal grid, with a size selected to be
as geographically precise as possible while containing one or more
cameras from each category in most cells. The density of the cam-
eras in each grid cell is described as high, medium and low. The
qualitative description of the cameras’ density is given in order to
manipulate this information in BN. Besides, this description facili-
tates human reasoning and it can deal with human uncertain knowl-
edge [Oss01]. The point grid, which is used for the final visualiza-
tion, represents centers of the hexagons and provides an overview
over the whole city area.

3.2. Visual Analytics Approach for Bayesian Network analysis

In this research, we apply BNs to represent probabilistic knowledge
about spatially referenced data. The BN is a probabilistic graphical
model that gives a concise representation of a joint probability dis-
tribution on a set of statistical variables [Pea85]. The BN model is
built on Bayes theorem (see equation 1) and described by qualita-
tive and quantitative components such as Directed Acyclic Graphs
(DAGs) and Conditional Probability Tables (CPTs), respectively.
The reasoning process is based on modeling uncertainty in the rea-
soning rules (through CPTs) and the uncertainty in data sources
(through the priors) [SPK98].
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P(X |Y ) = P(Y |X) ·P(X)

P(Y )
(1)

The qualitative component is a graphical model structure of the
dependencies among the variables. The structure is realized by
means of a Directed Acyclic Graph (DAG). The DAG consists of
nodes (random variables) and edges that connect these nodes (see
Fig. 1). Nodes are the labeled circles. Edges define probabilistic
relations among nodes. Here, we introduce a VA-supported appli-
cation of BN to explore the geographic coverage provided by in-
tegration of three kinds of public security cameras, particularly for
use in monitoring activity associated with potential mass gather-
ing events. The three data sets are represented are: residential com-
plex cameras (R), mass gathering cameras (M), and police station
surveillance cameras (P). Each is depicted in the BN as a node.
Such discrete nodes are also called parent nodes, as they do not
have predecessors. Furthermore, the parent nodes R, M, P, and the
“Mass event” node are described by prior probability distributions.
For the nodes, R, M, and P the prior probability distributions are
given based on the density of the locations within a given grid cell
and characterized using qualitative values: high, medium, and low.

Figure 1: Bayesian Network structure for reasoning on spatial het-
erogeneous public surveillance data.

The quantitative component of the BN is determined by CPTs
and (in the system presented here) can be elicited from an ana-
lyst via an interactive facility provided by the VA interface. The
interaction process within the application is realized through the
CPT panel, where the conditional probabilities can be adjusted in
order to see how the distributions change. The Bayesian probabil-
ity theory allows reasoning under uncertainty, thus, it provides a
consistent mechanism to replace the uncertainty state with a nu-
merical value in the interval [0, 1] representing degrees of truth,
belief or plausibility [Ort10]. The aggregated sum of conditional
probabilities equals to 1, thus by changing one value, other val-
ues are adjusted. The node X (Monitored) is a child node of R, M,
and P; therefore, it is defined by a probability distribution over its
outcomes (highly monitored, medium monitored, low monitored),
conditional on the outcomes of its predecessors (nodes R, M, and
P) (see Fig. 2). The size of the CPTs in the BN is exponential in
the number of parent nodes. In the case given, three nodes can gen-
erate a table with 27 columns. Given that the node X includes a
prior probability distribution with three outcomes (highly moni-

tored, medium monitored, low monitored), the CPT for this node
has three rows, therefore, there are 81 possible intersections.

Accordingly, the numerical values of subjective belief in the
interval [0, 1] are introduced through the user-interface using a
bar chart representation within panels “Monitored” (Fig. 2) and
“Safety”(Fig. 3). In the panel “Monitored”, a potential analyst can
introduce values within the CPT on how the data given are related.
For example, an analyst assumes that a high density of police and
residential complex cameras and a medium density of mass gath-
ering cameras result in the city zone being classified as high moni-
tored with a given probability. Such an assumption might be made
due to the fact that mass gathering cameras have a wider angle of
observation, thus fewer cameras are needed to cover an area com-
pletely. The same procedure is valid for the node “Safety” as it is
defined by outcomes of its predecessors: “Monitored” and “Mass
Event” (see Fig. 3). The numerical parameters of the CPTs are vi-
sualized and the user can change them through the user interface to
represent their subjective beliefs.

Figure 2: Conditional Probability Table for the node X “Moni-
tored”. The CPT can be elicited from an analyst via an interactive
facility provided by the VA interface.

The inference outcome is registered in the data attribute and it
includes a categorical value “noticed/unnoticed” and a numerical
value, which is the value of the conditional distribution. In this
research, we chose proportional circles that characterize the like-
lihood of different city zones being monitored (Fig. 4). The pro-
portional circles represent the data set discretely, showing patterns
where the cameras’ coverage is dense, rather than representing an
interpolated value over the city district. The size and color of cir-
cles directly signify the probability value at a given location and
may be updated when new evidence is set (for instance, evidence
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Figure 3: Conditional Probability Table for the node “Safety”.

of a mass gathering event or updated conditional distribution with
CPT for “Monitored”). Apart from interaction via the CPT panel,
the user can browse the map and obtain details about each point.

Figure 4: Map panel. The size and color of the proportional circles
characterize the likelihood of different city zones being monitored
given the probability value in the interval [0, 1]. The Map panel
also includes zoom, selection, and layer controls, map legend, and
an overview map for a rapid navigation.

To produce an extensible, generally applicable system, the VA-
BN application has been implemented using interoperable methods
in an open system setting. Specifically, the application prototype is
developed based on the three-tier architecture including Database
Management System (DBMS), namely PostgreSQL, Servlet En-
gine (GeoServer and R) and Client side components (R Shiny). The
implemented application utilizes R packages bnlearn, that provides
BN structure, parameter learning and inference [Scu09], and gRain
that implements propagation algorithm in BN [Høj13].

4. Discussion

Targeting a classification task focused on heterogeneous spatial
data under states of uncertainty, we combine a Visual Analytics
(VA) approach and Bayesian statistics that address four objectives:
(i) evaluate the feasibility of using a probabilistic graphical model,
namely a Bayesian Network (BN), to represent conditional depen-
dencies utilizing heterogeneous spatial data; (ii) provide visualiza-
tion support where results of the inference can be observed in a spa-
tial context; (iii) support users when introducing subjective beliefs
for characterizing conditional probabilities; (iv) exploit advances

Figure 5: Uncertainty-Aware Visual Analytics Interface. The in-
terface is developed using data of public surveillance cameras in-
stalled in mass gathering places, common areas of residential com-
plexes, and points of police assistance.

in VA development by the integration of spatial data and com-
putational capacity. We illustrate the capabilities of our proposed
uncertainty-aware VA application by presenting a case study using
surveillance camera data from three sources in Moscow: mass gath-
ering places, residential complexes, and points of police assistance.

By exploiting the potential of VA development, the prototype
uncertainty-aware application integrates data, computational ca-
pacity, and visualization facility within an application that sup-
ports human-computer interaction processes. The developed ap-
plication is realized through support of connections among spatial
data, BN modeling, visualization, and the users in order to examine
city areas monitored by public camera facilities under the subjec-
tive judgment of the spatial data availability, quality, and relevance.
The method introduced is capable of obtaining probabilistic pre-
dictions based on user input and the BN model structure; therefore
it combines both human and Bayesian reasoning. The user inter-
action involves user-defined quantitative input and an interactive
map. The analysis is driven directly by inputs formulated by the
analysts through the user interface. The output of the analysis is
visualized using proportional circles to signify the probability of
public safety under consideration of a mass event occurrence. The
results of the analysis of heterogeneous public security data aim to
complement the existing city models with insights for designing ef-
fective city planning strategies and supporting decision-making in
environmental modeling.

In future research, we plan to conduct a usability study with a
group of analysts to evaluate the feasibility of applying the pro-
posed method in different scenarios. Another issue to be tackled is
scalability of the interface design when more data is fused into the
BN as the conditional probabilities will grow exponentially.
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