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Abstract
The medical visualization pipeline is affected by various sources of uncertainty. Many errors may occur and several assumptions
are made in the various processing steps from the image acquisition to the rendering of the visualization output, which induce
uncertainty. High uncertainty leads to low robustness of the algorithms impacting reproducibility of the results. We present how
uncertainty can be mathematically described in the medical context. Moreover, in medical applications, the visualization is
typically based on a segmentation of the medical images. We propose a method to capture uncertainty in image segmentation
and present extensions to ensemble and multi-modal image segmentation.

1. Introduction

The medical visualization pipeline ranges from medical imaging
over several data processing steps to the final rendering. Each of
these steps introduce a certain amount of uncertainty based on er-
rors or assumptions. The rendered images typically omit this infor-
mation and allude to the fact that the shown information is the only
possible truth. Medical doctors may base their diagnoses and treat-
ments on these visual representations. However, many decisions
made in the visualization pipeline are sensitive to small changes,
i.e., the robustness of the approach is low. To allow for a proper
assessment of the data by the medical experts, the uncertainty that
is inherent to the displayed information needs to be revealed.

A crucial step in the medical visualization pipeline is the seg-
mentation step, which classifies each voxels in the medical im-
age. Many different approaches exist and they often lead to dif-
ferent results due to the errors in image acquisition and assump-
tions in image (pre-)processing, We present an approach to capture
these uncertainties. When applying many different segmentation
approaches to find a best combined result, one uses the concept of
ensemble segmentations. We generalize our approach to also cap-
ture the uncertainty in ensemble segmentations. This naturally ex-
tends to multi-modal image segmentation uncertainties.

2. Uncertainties in the Medical Context

We first develop a mathematical description to capture uncertainty
in medical visualization. We adopt the concept of random fields.
Let (Ω,A,µ) denote a complete probability space with a set of
events Ω, where an event is a set of outcomes, a sample space A ,
which is a set of all possible outcomes, and a function µ that assigns
to each event a probability. In the context of spatially sampled data,
it has become popular to describe uncertain quantities by stochas-

tic fields (or random fields), which roughly speaking are random
variables indexed by a spatial location. If D ⊂ Rn is a set of spa-
tial locations and B(D) is a Banach space of functions over D (e.g.,
scalar or vector-valued functions on D), then a random field is a
random variable X(·;x) : Ω→ R, which is indexed by x ∈ D and
such that X(ω, ·) ∈ B(D) for all possible events ω ∈Ω.

In the medical visualization pipeline, several processing steps
are applied, each of which introduces uncertainty. After data acqui-
sition, processing steps including image reconstruction, correction
of noise, bias fields, partial volume effects, and patient motion, and
possibly registration all make assumptions to compensate for imag-
ing errors. Such uncertainties impact the image segmentation step,
which is crucial to all further visualization tasks. There is a wide
variety of segmentation procedures that can be applied. Their typ-
ical outcome is a list of n segments, where each voxel is assigned
to one segment. When capturing the uncertainty in this step, we
obtain for each voxel an n-dimensional probability vector that in-
dicates the probability that the respective voxel belongs to one of
the n segments. Fuzzy segmentation procedures, such as the fuzzy
c-means [BEF84] or modified fuzzy c-means [MAF99], or some
Bayesian algorithms, such as the maximum a posteriori or Markov
random fields [HGM09], capture these vectors. In the context of
the partial volume effect, the type of uncertainty that is being cap-
tured by such probabilistic segmentation algorithms is a discrete
3D random field with categorical events. We have derived a com-
plete taxonomy of uncertainties occurring in medical visualization
according to the presented mathematical description and classified
the different uncertainty typed [RPHL14].

3. Uncertainty in Image Segmentation

To capture the uncertainty in medical image segmentations, we
propose an information-theoretical measure applied to fuzzy (or
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Figure 1: (a) Uncertainty visualization of multi-modal image segmentation (high uncertainties in brighter colors). (b) Improved segmentation
of multi-modal image with multiple sclerosis tumor segmented from high-uncertainty regions in (a). (c) Uncertainty visualization of time-
varying image segmentation. (d) Segmentation of tumor growth area from high-uncertainty regions in (c).

probabilistic) segmentation results. Given two probability vec-
tors P = (P1, . . . ,Pc) and Q = (Q1, . . . ,Qc) of dimensionality
c, the Kullback-Leibler divergence is defined as DKL(P‖Q) =

∑
c
i=1 Pi log2

Pi
Qi

, which measures the difference between the two
probability vectors or the information loss when Q is used to ap-
proximate P. P represents the true distribution of data,

We use the Kullback-Leibler divergence to compute the uncer-
tainty U(v) associated with a voxel v based on the probability vec-
tor Pv that has been computed using a probabilistic segmentation
algorithm, i.e., the i-th entry of vector Pv denotes the probability
that voxel v belongs to the i-th segment, where the number of seg-
ments is c. Following the definition, we use the Kullback-Leibler
divergence to measure the amount of the deviation of the probabil-
ity vector Pv from the minimum uncertainty vector Pmin. Minimum
(i.e., no) uncertainty is obtained when one entry of the probability
vector is 1 and all the others 0. Hence, we set Pmin = {1,0, . . . ,0}.
Maximum uncertainty is obtained when a voxel is equally likely to
belong to all segments, i.e., Pmax = { 1

c , . . . ,
1
c } Consequently, the

uncertainty for voxel v is defined by UKL(v) =
DKL(Pmin‖Pv)

DKL(Pmin‖Pmax))
. Re-

sults for uncertainty visualization are presented in [AHL14b].

4. Uncertainty in Ensemble Segmentations

In order to easily reproduce medical visualizations, the segmenta-
tion step needs to be robust, i.e., similar inputs shall lead to similar
outputs. For a more robust (and improved) segmentation, ensem-
ble of classifiers can be introduced. For ensemble segmentation,
instead of using the probabilities obtained by a single classifier,
the probability values of all classifiers compete to determine the
winner as the final ensemble decision. Different combining rules
can be used. We extended them to the probabilistic setting and ob-
served that the majority rule performs best. Here, the i-th entry
of the probability vector of the probabilistic ensemble segmenta-
tion result (for L classifier) at each voxel x can be computed by

Pi(x) =
∑

L
j=1 ∆i j

∑
c
k=1 ∑

L
j=1 ∆k j

, where ∆i j is a binary vote being 1 if Pk j is

the maximum among all Pi j , i = 1, . . . ,c, and 0 otherwise. Our em-
pirical studies showed that the ensemble sementations can reduce
uncertainty [AHL14a].

5. Ensemble Diversity

The success of an ensemble segmentation is based on its diver-
sity. A classifier ensemble is considered to be diverse, if the clas-

sifiers make no coinciding errors. We propose a local diversity
measure given by the normalized entropy D(Pv) =

H(Pv)
log2(c)

, where
H(Pv) is the entropy of the probability vector Pv, i..e, H(Pv) =
−∑

c
i=1 Pvi log2 Pvi . Global diversity can be estimated as the average

local diversity. The local diversity is 0 when all classifiers agree on
one decision and it is 1 when all classes have equal probability. We
show the advantages of our local diversity measure for uncertainty
visualization in [AHL15a].

6. Uncertainty in Multi-modal Image Segmentations

The ensemble segmentation can also be used in the context of
multi-modal segmentations, where classifiers are applied to dif-
ferent modalities of a multi-modal image. When using different
modalities, tumors show up with different intensities. Hence, when
using a majority vote rule, the votes do not not concur in tumor
regions leading to high uncertainties. Figure 1 shows an example
where T1-weighted, T2-weighted, and PD-weighted magnetic res-
onance images of a head scan (data source: Brain Web) were com-
bined. The tumors show up as high-uncertainty regions (a) and can
be segmented robustly based on these estimates (purple regions in
(b)). Figure 1(c) shows how our approach is applied to time-varying
data, where T1-weighted magnetic resonance images where taken
at two points in time. The example shows that the segmentations
do not occur in region of tumor growth, i.e., the uncertainty is high.
Figure 1(d) shows the respective tumor growth area (in purple) de-
rived using our uncertainty-based approach, More details are pro-
vided in [AHL15b].

7. Conclusion

Reproducibility of medical visualization results is impaired by the
choice of many parameters in the medical visualization pipeline,
especially in the crucial segmentation step. Uncertainty sources in
the pipeline accumulate and lead to a challenging segmentation
task. Probabilistic segmentations try to capture the uncertainty in
the approach. We presented an uncertainty measure in probabilis-
tic segmentation and showed how an ensemble of classifiers can be
used to reduce the uncertainty. This step relies on a diversity of the
ensemble. We also showed how this concept can be used in a multi-
modal setting to obtain reliable segmentations of features (tumors
in our case) that can only be extracted using all modalities. This
was based on our uncertainty measure.
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