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Figure 1: Types of uncertainty in ocean eddy detection quantified and utilized for visualization in the presented work. Transparency encodes
the amount of uncertainty detected in each cell of the ocean simulation where high transparency represents high uncertainty. a) Ensemble
uncertainty. b) Time uncertainty. c) Parameter uncertainty. The colors will be used throughout the manuscript to provide consistency.

Abstract

Eddy detection is a state of the art tool to examine transport behavior in oceans, as they form circular movements that are highly
involved in transferring mass in an ocean. To achieve this, ocean simulations are run multiple times, and an eddy detection is
performed in the final simulation results. Unfortunately, this process is affected by a variety of uncertainties. In this manuscript,
we aim to identify the types of uncertainty inherent in ocean simulations. For each of the identified uncertainties, we provide
a quantification approach. Based on the quantified uncertainties, we provide a visualization approach that consists of domain
embedded views and an uncertainty space view connected via interaction. We showed the effectiveness of our approach by

performed a case study of the Red Sea.
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1. Introduction

Ocean eddies are clockwise or counter-clockwise circular move-
ments of water. They play an essential role in transferring heat,
energy, and material in oceans and can affect global ocean dynam-
ics, weather conditions, and commercial activities [McwO08]. The
detection of eddies is an important task to investigate oceanic dy-
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namics, improve local ocean forecasts, and provide tools for the
coastguard to undertake search-and-rescues [LYD*20].

To detect eddies, simulations of ocean water are run, and there
exist a variety of techniques that aim to compute if an eddy is
present in a particular cell of the simulation. This process intro-
duces various uncertainties that can influence the decision-making
process [SSK*16].
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To create an awareness of all these uncertainties, suitable visu-
alization approaches are required. Unfortunately, they often do not
include uncertainty or solely consider one type of uncertainty (see
Section 2).

This work aims to provide an uncertainty-aware detection and
visualization framework that allows incorporating uncertainties in
eddies’ simulation process. First, we provide a list of uncertainties
in ocean simulation data (see Section 3). Based on this analysis, we
provide mathematical mechanisms to quantify these uncertainties.
At last, we provide a visualization approach that shows the com-
puted eddies and the uncertainty in this process (see Section 4).
The visualization consists of two views: a domain-embedded view
showing the spatial location of detected eddies and the quantified
uncertainties, and an uncertainty space view indicating the distribu-
tion of uncertainty quantified in a dataset. The views are connected
via interaction.

Therefore, this paper contributes:

e An analysis of sources of uncertainties in ocean eddy detection

e A quantification approach for different sources of uncertainty in
ocean simulations

e An uncertainty-aware visualization approach for ocean eddies

To show the benefits of the presented approach, we use the
SciVis 2020 Contest holding an ocean simulation of the Red Sea,
which consists of multiple time-dependent samples, and apply our
uncertainty-aware detection and visualization of eddies to it (see
Section 5). Our results will be discussed in Section 6.

2. Related Work

In this section, we aim to provide an overview of eddy detection
approaches and uncertainty analysis in this context. Ocean eddies
play an important role. They provide essential material knowledge
for the equilibrium balances of the general circulation and climate.
There is a direct link between the water mass properties of an eddy
and its rotation. Warm eddies rotate anti-cyclonically, while cold
eddies rotate cyclonically [SYY*13].

2.1. Eddy Detection and Visualization in General

Ocean eddies can be detected in various manners [LSW*19]. Here,
Wavelet methods [DBSL07] or Vector-based methods [NDD*10]
are common approaches. The most popular Eddy detection ap-
proach is based on the Okubo—Weiss parameter (W) [Oku70,
Wei91]. For example, in the work of Raith et al. [RRHS17] W is
used to detect eddies and track their transport properties of temper-
ature and salinity over time.

The detection and visualization of eddies are highly related to en-
semble visualization, where Wang et al. [WHLS18] provided a state
of the art analysis. On the other hand, eddy detection and visualiza-
tion is a clear application of flow field visualization as shown in
the state of the art report by Bujack and Middel [BM20] which can
be either performed by partitioning-based techniques [SLWS08] or
structure-based techniques [SJATWSO07].

Xie et al. [XLWD19] provided a state of the art analysis of ocean
data visualization, where uncertainty analysis and its visualization

have been stated as one major challenge when dealing with ocean
data. This forms the motivation of the presented work.

There exists a variety of visualization approaches that can be
used to indicate eddies. They include iso-surface based approaches
[WZW™*20], glyph-based approaches [FEFH20], visual analytics
dashboards [HCA*20], feature tracking approaches [OBH"20] and
web-based visualizations [VPD20].

Unfortunately, these approaches are not aware of the different
sources of uncertainty inherent in an ocean simulation and are not
able to compute or present them. In the presented approach, we
aim to identify sources of uncertainty in ocean simulation data and
provide methods to compute them.

2.2. Uncertainty-aware Eddy Detection and Visualization

The detection of eddies in ocean simulation is highly affected by
uncertainty, which has been visually tackled, as summarized below.

Gillmann et al. [GWHHI18] provided a surface extraction algo-
rithm that can be used to show the difference in the boundary of
detected eddies, which can also be visualized [GWHA18]. Franz
et al. [FRM" 18] used a Bayesian neural network to detect eddies
and a probability for each eddy. Here, eddies are shown with differ-
ent transparencies according to the predicted probability. Unfortu-
nately, this approach does not include multiple simulation runs into
their considerations.

Athawale et al. [AAEJ20] used statistical rendering to indicate
how often an eddy can be detected in a simulation. Their visual-
ization shows a lower alpha-value when eddies are detected less
often in the available simulations. Hollt et al. [HMZ* 14] provided
a visual tool that allows to examine the detection of ocean eddies
in ensemble visualizations and review the size of individual eddies.
Although these approaches provide visual feedback for the occur-
rence of eddies in an ensembles, they do not address further uncer-
tainties such as parameter uncertainty or transport uncertainty.

Zanna et al. [ZBH™ 18] provided a side-by-side visualization that
shows the transport uncertainty that can be computed based on a
prior eddy detection. Here, color coding is indicated to show un-
certain areas in predicted transport. Rapp and Dachsbacher [RD20]
generalized this approach for various transport examinations that
are not restricted to eddies. Unfortunately, these approaches do not
consider the uncertainty of the eddy computation itself.

Although the presented approaches can indicate one source
of uncertainty in a visualization, they cannot indicate multiple
sources. This forms the basic research motivation of our approach.

3. Uncertainties in Eddy Detection

The process of detecting eddies is affected by a variety of sources
of uncertainty. This uncertainty highly affects the decision-making
process based on ocean water simulations. In this section, we aim
to summarize these uncertainties and discuss them.

The uncertainty of a measurement is a quantification of the
doubt about the measurement result [HDF10]. If this uncertainty
is known, the measurand is defined as uncertainty-aware. In con-
trast, if this uncertainty is unknown, a measurand is uncertain.
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This doubt can originate from a variety of effects, including an
incomplete definition of the measurand, the imperfect realization
of the definition of the measurand, non-representative sampling, in-
adequate knowledge of the effects of environmental conditions on
the measurement or imperfect measurement of environmental con-
ditions, personal bias in reading analog instruments, finite instru-
ment resolution or discrimination threshold, inexact values of mea-
surement standards, reference materials and parameters, approxi-
mations and assumptions incorporated in the measurement method
and procedure, and variations in repeated observations of the mea-
surand under apparently identical conditions [BHP15].

These effects can be separated into different categories: uncer-
tainty based on the underlying model (epistemic uncertainty e) or
statistical uncertainty resulting from variations in the measurement
result when running an experiment multiple times (aleatoric un-
certainty a). Here, a model refers to a computational description
that tries to map physical dependencies as adequately as possi-
ble. Naturally, a model is never complete, as the knowledge about
the physics surrounding us is not complete as well. In most cases,
aleatoric uncertainty is usually the type of uncertainty requested
to be visualized to enhance a decision-making process in a given
application [PRJ12].

3.1. Sources of Uncertainty in Eddy Detection

In the context of ocean simulation, multiple sources of uncertain-
ties can affect the resulting data and their analysis, which will be
summarized in the following where each type of uncertainty is clas-
sified as epistemic or aleatoric.

Ensemble Uncertainty (a) Ocean simulations are run multiple
times using different boundary conditions including temperature,
amount of water, or flow conditions. This results in a set of po-
tential ocean behaviors captured. Unfortunately, it is not clear if a
simulation is more trustworthy than another. Here, all simulations
need to be considered, resulting in ensemble uncertainty. For eddy
computations, this means that there might be simulations that con-
tain an eddy at a certain point and others that do not.

Time Uncertainty (a) Ocean simulation results usually yield a
time-series that needs to be analyzed. Throughout different time
steps, the values can be more or less accurate, and time steps need to
be correlated to understand eddies detected in different time steps.
This results in time steps that can be classified as certain or uncer-
tain, defined as time uncertainty.

Parameter Uncertainty (¢) When detecting eddies, ocean sim-
ulations are examined mathematically to determine if an eddy is
present at a specific location or not. Here, several parameters can
be used to set a threshold that aims to exclude noise resulting
in false detection of eddies. These thresholds are chosen based
on several experiments, and there exists a broad consensus about
proper thresholds. Still, there is no mathematical proof of an opti-
mal threshold. This results in parameter uncertainty.

3.2. Requirements for Visualization of Uncertainty-aware
Eddies

Sacha et al. [SSK*16] provided guidelines that need to be consid-

ered in order to create an uncertainty-aware visualization in gen-
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eral. We would like to derive criteria for uncertainty-aware visual-
ization approaches for eddy computation in ocean simulations for
this work.

R1: Quantify Uncertainty in each Instance In eddy detection
tasks, ocean simulation results need to be quantified according to
their uncertainty. This mainly refers to the aleatoric types of uncer-
tainty and includes ensemble uncertainty as well as the time uncer-
tainty in the case of eddy detection.

R2: Propagate Uncertainty throughout a Computation For
eddies, a variety of metadata can be defined, such as size, loca-
tion of the center, or transport properties. The computation is based
on the uncertainty-aware input resulting from R1, which leads to
uncertain properties. Here, proper accumulation and propagation
approaches need to be considered.

R3: Visualize Uncertainty in each Instance Based on the quan-
tification and propagation of uncertainty in R1 and R2, ocean sim-
ulations can be extended. Here, the ocean simulation obtains an ad-
ditional value for each quantified type of uncertainty. These quan-
tities need to be visualized to allow users to access them. This can
easily result in clutter if visual variables are not chosen properly.

R4: Provide suitable Interaction Based on R3, users need to
be enabled to interact with the created uncertainty-aware visual-
ization approach. Here, suitable interaction metaphors need to be
selected to provide easy access to the data itself and the uncertainty
quantification.

4. Uncertainty-aware computation and visualization of eddies

This section provides uncertainty quantification approaches for the
identified sources of uncertainty in Section 3. Based on these com-
putations, we provide an uncertainty-aware Eddy visualization. The
only input required for the eddy calculation is a velocity field de-
fined on the corresponding domain.

4.1. Eddy Detection

The most popular Eddy detection approach is based on the
Okubo—Weiss parameter (W) [Oku70, Wei91]. This criterion quan-
tifies the relative importance of deformation and rotation. This can
be computed by:

W= si + si - o’ : o)
—_——— ~~

strain—dominated vorticity—dominated

where s, is the normal strain that indicates currents that are run-
ning against each other. sy defines the shear strains that determine
currents that are running in opposite directions. ® is defined as the
vorticity, where currents are moving in different directions. More
precise these components can be computed as:

R I S YO TN T
T & YT 8 &y dx Oy

Here, u defines the east-west velocity component, v describes the
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Figure 2: Quantification of sources of uncertainty contained in ocean simulation data and the creation of the glyph that represents the
quantities. Depending on the examined axis, it can be certain (1) that an eddy is present, uncertain if an eddy is present (2) and certain that
an eddy is not present (3) a) Ensemble uncertainty ue. b) Time uncertainty u;. c¢) Parameter uncertainty up. d) The quantification of the three
uncertainties combined in a disk glyph. The resulting size of the glyph depends on uy.

north-south components and x and y describe locally east-pointing
and west-pointing vectors. Defining eddies in this way allows them
to entirely local. Resulting from this, it is a proper choice for big
data such as ocean simulations.

As shown in Equation 1, W can be separated into two parts: pos-
itive strain-dominated domains and negative vorticity-dominated
domains. Still, the numbers close to zero are mostly dominated by
noise. Here, a threshold is applied that only keeps points with nega-
tive Okubo-Weiss values and discarding the values that are close to
zero. Therefore, the threshold should be nonzero. In the ocean anal-
ysis community, Okubo-Weiss values are divided by their standard
deviation 6. This results in keeping meaningful data points that are
located at least 0.2 standard deviations from 0. We keep this scheme
to provide a suitable starting point for our analysis while consider-
ing this assumption to be affected by uncertainty. More formally,
this means:

— < -02 3)

Still, W detects too many false positive eddies, which raises the
need of a further evaluation [RRHS17]. This can be achieved by
the so-called four-corner method. This method checks if an eddy
is rotating completely. This is achieved by computing an angle be-
tween each velocity vector of the points in the eddies and a vector
oriented towards the east. The angles are sorted into four classes: 0
-89°,90-179°, 180 - 269°, 270 - 360°. Each angle range needs to
be present in an eddy to a certain percentage. We use 8% as defined
by Williams et al. [WHP* 11].

Also, we compute the center ¢ of the eddy, which we use to po-
sition visual variables in Section 4.3. In this work, the center ¢ cor-
responds to the local minimum in the Okubo-Weiss field of the re-
spective eddy. Our considerations regarding the quantification of
uncertainty will build upon this eddy detection approach.

4.2. Computation of Uncertainty

In Section 3, we determined the uncertainties that affect the com-
putation and visualization of eddies. In the following, we provide

quantification approaches for each of these uncertainties. In this
setting, we aim to compute different settings of eddy detection,
while varying different input parameters. While testing, we aim to
capture how often we found an eddy using these different parame-
ters. As a measure of uncertainty, we aim to express the occurrences
of an eddies in comparison to the number of processed tests. For the
considered sources of uncertainty, we can make the following defi-
nitions:

e r;, range of parameters, where eddies are detected

o min(rj), max(r;), step(r;) the minimum, maximum, and step
size in r;

e p;, number of present eddies in r;

e max(p;), the maximum from p; of all cells from one eddy in a
simulation run

o ic{et,p}

where e refers to ensemble uncertainty, ¢ refers to time uncer-
tainty, and p refers to parameter uncertainty.

An overview can be found in Figure 2. Here, the resulting uncer-
tainty can be formulated as follows:

=1 max(p;) *ste.p(r,-) @
max(ri) — min(r;)

And equivalently we computed certainty as follows:

ci=1—u (5)

Ensemble Uncertainty u. aims to provide a measure that cap-
tures the uncertainty of eddy detection when considering multiple
simulation runs. Figure 2a shows a schematic description of eddies
evolving in ensembles. Here, we count the number of simulations
where an eddy can be detected. Therefore, r. = [0,n], where n is
the number of simulations that is considered. Naturally, step(re) is
set to 1 to include the entire ensemble dataset. Figure 1a shows pe,
where the opacity of the red color indicates the amount of found
eddies throughout the different ensembles. Here, we can clearly
identify four major eddies in the right part, whereas the left part
seems to be uncertain in terms of eddy detection.

Time Uncertainty u, To capture time uncertainty, we need to
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review different time steps and compare the found eddies. Here,
7t = [0, fmax], where fiax holds the maximum number of time steps.
To include all time steps, step(ry) is set to 1. Figure 2b shows a
scheme how eddies evolve throughout time. Based on this, Figure
1b shows p;, where only three major eddies can be found in the
right part of the sea. On the other hand, we can identify an eddy on
the left side of the Red Sea, which is very certain considering time.

Parameter Uncertainty u, To capture the parameter uncer-
tainty of an eddy detection, we need to alter the used threshold that
discards eddies resulting from noisy data. Although this is not the
only parameter that can be changed, we would like to focus on the
threshold that excludes noisy data. Other thresholds can be consid-
ered in this analysis in the same manner but need to be tested for
independence. Figure 2c shows a scheme how eddies evolve using
different input parameters. As already mentioned, % < -02isa
common use of a threshold for eddies. Here, we can alter the thresh-
old. Although the range can be set arbitrarily, solely values between
—inf and 0.0 are suitable for the given use case. The selected step
size defines how extensive the analysis of the parameter uncertainty
is performed. Figure 1c shows p, encoded in the transparency of
green. In this case, separating the four major eddies in the right
part of the sea is not clear. Still, it is very certain that the simulation
ensemble contains multiple smaller eddies in the left part.

Combination of Uncertainties us As shown in Figure 1, each
type of uncertainty can be reviewed independently by mapping p
into the original domain. Still, this could result in visual clutter.
In addition, we aim for a unified measure that captures all three
types of uncertainty. Therefore, the unified uncertainty uy can be
computed as follows:

Yiu;
uy = % : (6)
And equivalently we computed unified certainty as follows:
Yici
cx = 13 : @)

This means, that we aim to add all measured uncertainties and
rescale them back into the range of [0, 1], where 1 means, that the
eddy is completely uncertain and 0 means, that the eddy is abso-
lutely certain and vice versa for the unified certainty.

In this manuscript, we did not consider if the examined uncer-
tainties are independent. We aimed to provide a first attempt to un-
derstand different types of uncertainty in eddy detection. In fact, the
made computation is a worst case estimation of the three combined
uncertainties. Also further combination errors such as the L2-Norm
can be applied when assuming, that the considered uncertainties are
independent. The shown computations will be used in the following
to provide an uncertainty-aware visualization of eddies.

4.3. Visualization

Based on the performed uncertainty quantification, we are able
to provide an uncertainty-aware visualization of eddies. We pro-
vide two views: a domain-embedded view and an uncertainty space
view, that are connected via interaction.
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4.3.1. Domain-embedded View

The domain-embedded view shows the underlying domain that is
considered in the detected ocean eddies. This domain is used to
provide a spatial location of the detected eddies and their quantified
uncertainties. Our goal is to extend the display of detected eddies by
a glyph that captures the three types of uncertainty that have been
quantified. These glyphs allow us to see at a glance how likely the
eddy is and how strong different types of uncertainty are in relation
to others. Thereby, the probability corresponding to all uncertainty
sources considered in this paper is displayed. First, we provide an
iso-surface-based visualization of eddies, where the opacity of each
iso-surface is based on uy. In this iso-surface, we place a glyph
consisting of three disks that are placed into each other. All disks
hold the same height, which can be adjusted according to the users
need. The position is determined by c. The extent of each area in
the glyph sees Figure 2d indicates the magnitude of each certainty
c¢;. Here, each disk varies its size according to the ratio that the
respective uncertainty holds in the combination of uncertainties.
The total size of the glyph shows the combined magnitude.

It is also possible to display the glyph size normalized, which
simplifies comparing the respective sources of uncertainty with
each other. The user can choose whether the uncertainty of a single
uncertainty source or the united uncertainty uy is used in Figure 3.

e N

b ]
[ 3 T

®

Figure 3: Domain-embedded view of the presented approach. Ed-
dies are shown by iso-surfaces that encode uncertainty in their
transparency. Each eddy obtains a glyph that indicates the distri-
bution of the three quantified uncertainty in each eddy.

4.3.2. Uncertainty Space View

In contrast to the domain-embedded view, the uncertainty space
view spans an attribute space consisting of the three uncertainty
sources described in this paper. In this space, the entire domain or
only a part of it is mapped linearly. Here, we build an uncertainty-
cube that consists of the three uncertainty values as dimensions.
In the respective cube, all uncertainties will be shown as points in
space, where each uncertainty describes one coordinate (X, y, z),
to provide a first overview of the distribution of uncertainty values
in a dataset. This visualization is helpful in understanding which
uncertainty combinations can be examined.

4.3.3. Interaction

The interaction serves to connect the two views and offer a further
possibility of analysis. The approach to interaction is based on the
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work [RBN*18, BRS*19, RBR*20] on fiber-surface extraction in
which regions from a co-domain are mapped into a domain and
vice versa with an region of interest (ROI). For this purpose, users
can identify regions that should be examined more closely with dif-
ferent types of ROL. In this cases, the extraction of the fiber-surface
takes less than 1s. The domain, defining the ROI, or partial domain,
is represented as a wireframe, as shown in Figure 5a. Applied to
our work, we can enable the user to examine the entire uncertainty
space and display the results in addition to the detected eddies in
the domain-embedded view see Figure 5b.

On the other hand, the user can select a single eddy in the
domain-embedded view and display it in the uncertainty space see
Figure 5c. The user can then examine the eddies’ details in the
uncertainty space view and project them back into the domain-
embedded view see Figure 5d. In this study, the use time was not
considered. Still, we expect a certain amount of training time to
handle this interaction usefully.

5. Case Study

To show the effectiveness of the presented approach and discuss it,
we provided a case study of the Red Sea, which is a freely available
dataset that was published by the SciVis Contest 2020.

5.1. Data

The examined dataset shows a bathymetry of the Red Sea over a
variety of time steps and ensembles. In addition, the dataset holds
different types of uncertainty that will be summarized by the pre-
sented approach.

The dataset consists of the Red Sea bathymetry and an ensemble
(50 members) of time-dependent 3D flow and scalar fields on a
regular grid. Each simulation consists of 60 time steps, where each
time step contains an ensemble of 50 samples defined on a regular
grid with the size of 500x500x50 cells. Each cell has a size of 0.04°
x 0.04° (4km) with 4m height at the surface, increasing to 300m
near the ground. Each cell in the simulation contains the following
information: satellite sea surface temperature, sea level anomalies
and in situ salinity, and temperature [STZ"20].

5.2. Results

To apply our approach to the presented dataset, we first need to
define the used ranges for the uncertainty computation. Here, we set
re = [0,50] with step(re) =1, rp = [—0.01, —0.5] with step(rp) =
0.01 and r; = [0,60] with step(r;) = 1. Then, we start a simulation
run to detect the eddies in the Red Sea MEAN dataset at time step
0 with a percentage of 8% for the four-corner method and -0.2 as
the threshold for W.

Figure 4 shows two closeups of the domain-embedded visual-
ization. Figure 4a mainly shows the Gulf of Aden, where usually
4 major eddies are detected. Applying our visualization approach
shows that the Eddy 2 and Eddy 3 hold a high uncertainty, as they
are shown more transparent than the other eddies. This indicates
that the eddies are less certain than Eddy 1 and Eddy 4. This is also
indicated by the size of the glyph. Here, the glyphs of the uncertain

(b)

Figure 4: Two closeups of the domain visualization shown in Fig-
ure 3. a) Closeup of the Gulf of Aden. b) Closeup of the Red Sea
with two sub closeups (marked as 1 and 2).

eddies are smaller. When having a closer look at the glyphs, we can
determine that the three uncertainties are well distributed among
the three captured uncertainties in certain glyphs. When consider-
ing Eddy 2, we can directly see that the u) is very high in compari-
son to the remaining uncertainties. This indicates that the parameter
choice of W is very sensitive in this eddy detection. For Eddy 3, we
can see that the overall high uncertainty mainly origins from the
parameter uncertainty and the ensemble uncertainty, whereas time
does not introduce a high amount of uncertainty. Figure 4b shows a
closeup of the Red Sea. We can easily identify that all detected ed-
dies hold a high uncertainty, as they are shown very transparently,
and the resulting glyphs are relatively small. Closeup 1 shows a set
of small eddies that hold a high uncertainty. For all these eddies it
can be seen that the parameter uncertainty is very high in compari-
son to the remaining uncertainties. This indicates a high sensitivity
of W in these selected eddies. Closeup 2 shows an eddy with an
intermediate amount of uncertainty. Here, we can directly see that
this uncertainty origin from a mix of high u. and high u,, whereas
time does not seem to have a strong influence on the uncertainty of
the eddy. This shows that the proposed visualization allows an easy
mechanism to understand the uncertainty inherent in an eddy and
the distribution of uncertainty throughout the different uncertain-
ties. Here, users can easily separate eddies into different groups.

Figure 5a shows the selection process in the co-domain. Here,
a plane is used as a selection tool. Reviewing the first eddy of the
Gulf of Aden in the domain-embedded space, we can identify a core
of the eddy as shown in orange in Figure 5b. This core indicates the
most temperature color-coded in orange. This is an important infor-
mation for domain scientists as properties such as temperature and
salt content can provide a deeper understanding of ocean dynamics.

Figure Sc shows the selection in the co-domain using two cubes
(marked as 1 and 2). Please note that the domain is pre-selected by
using the fourth eddy in the Gulf of Aden. The respective areas of
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Figure 5: Visual exploration of uncertainty space of ocean eddy computation. a) Selection of uncertainty space via the co-domain using a
selection plane. b) Resulting selection in the domain space for the fourth eddy in the Gulf of Aden. c) Pre-selection of co-domain using the
Eddy 1 in the Gulf of Aden and two additional selection cubes. d) The two selected cubes highlighted in the domain-embedded view of the
Gulf of Aden. The selected parts of the eddies are color-coded according to the temperature present in the simulation result.

selection can be reviewed in Figure 5d. Here, we can see a separa-
tion of these two areas that result in two compartments in the eddy.
Cube 1 shows a smaller subdomain holding a high ensemble uncer-
tainty. In addition, the selected core itself holds a high uncertainty.
Cube 2 shows high uncertainty in all three quantified uncertainties
and is located in the center of the eddy. This shows that the larger
core of the eddy is more certain than the smaller eddy attached to
it. Again, the temperature at the considered cell in the simulation is
used as a color-coding.

This example shows that the interaction approach we propose
allows users to explore the distribution of uncertainties throughout
the selected eddies and correlate them with the defined uncertainty
space.

6. Discussion

In this manuscript, we provide an visualization approach to cap-
ture different sources of uncertainty inherent in the computation of
ocean eddies and conducted a case study of the Red Sea. In this
section, we aim to discuss the presented approach.

6.1. Check of Requirements

In section 3, we provided a list of requirements that need to be
fulfilled in order to provide an uncertainty-aware visualization of
eddies.

We quantified three different types of uncertainty (containing
both aleatoric and epistemic uncertainty) that are inherent in de-
tected eddies. Here, we provide suitable quantification approaches
for ensemble uncertainty, time uncertainty, and parameter uncer-
tainty (R1). We are aware that more sources of uncertainty might
be considered in this context, such as user bias or sampling un-
certainty. Still, we decided to focus on uncertainties that are di-
rectly originating from the computational results of the eddy de-
tection. In the presented case, we restrict the uncertainty analysis
to an uncertainty-aware detection and visualization of eddies. Fur-
ther analysis of eddies is explicitly not covered in this work due to
scope restrictions. Therefore, R2 can be neglected in the presented
analysis.

We provided an uncertainty-aware visualization that allows vi-

sualizing eddies and their uncertainties based on the preformed un-
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certainty quantification. Here, we combined all quantified uncer-
tainties into one visualization that shows the total amount of uncer-
tainty as well as the distribution of uncertainty among the different
kinds. As we can include this knowledge into a general visualiza-
tion of eddies, we allow users to review detected eddies and their
uncertainty (R3). In addition, we provide an uncertainty space cube
that shows the distribution of detected uncertainties.

Between the two visualization approaches, we provide an inter-
action by brushing and linking (R4). Here, users can visually in-
spect the uncertainty space that results from our analysis and de-
fines subspaces that they need to visually correlate with the 3D
view. The same can be achieved when selecting an eddy. Here, re-
spective areas in the uncertainty space will be highlighted.

6.2. Further Applications

Although we provided very specific ocean eddies analysis, our ap-
proach is not restricted to ocean data in general. Whenever turbu-
lences are of interest, our visualization approach can help to ex-
amine these structures. We also propose that an analysis of uncer-
tainties in geospatial data is a need in many applications, especially
when considering multiple ensembles. Here, our approach could
be seen as an example of performing uncertainty analysis in the
respective areas.

7. Conclusions and Future Work

We proposed an uncertainty-aware detection and visualization ap-
proach of ocean eddies in ensemble flow fields. Our approach is
based on a brief introduction to types of uncertainty that are present
in ocean simulations. Followed by that, we utilize the Okubo-Weiss
eddy detection approach to extract eddies. For each source of un-
certainty, we provided a quantification of each type of uncertainty.
At last, we provide a visualization approach that provides a holistic
view of the quantified uncertainties. We conducted a case study of
the Red Sea and examined the eddies and their uncertainty based
on the quantified uncertainties.

For future work, we aim to provide further uncertainty quantifi-
cation approaches for meta-parameters that can be computed for
certain eddies. In addition, we aim to analyze further datasets that
contain ocean simulations. At last, we target a user evaluation that
examined the performance of the interaction methodology provided
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