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Abstract
Farm-scale cultivation of macroalgae for the production of renewable biofuel depends on complex ocean hydrodynamics and
also on the availability of different essential nutrients. To better understand such conditions that are conducive for the growth of
macroalgae, scientists implement large-scale computational models, simulating several physical variables (essential nutrients,
and other chemical compounds), relevant to study oceanic biogeochemistry (BGC). Visualizing and analysing the different
physical variables and their inter-variable relationships across the spatial domain is crucial to form concrete understanding
of the underlying physical phenomenon. To facilitate such multivariate analyses for large-scale simulation data, a popular
and effective way is to decompose the spatial domain into smaller local regions based on the variable relationships. However,
spatial decomposition of multivariate data is not trivial. In this paper, we propose a novel multivariate spatial data partitioning
approach using probabilistic principal component analysis. We also perform detailed study of other prospective multivariate
partitioning schemes and compare them with our proposed method. To demonstrate the efficacy of our approach, we studied
nutrient relationships across different regions of the ocean using a high-resolution Ocean BCG simulation data set, which
comprises of multiple physical variables essential for macroalgae cultivation. We further validate the results of our analyses by
getting feedback from domain experts in the field of ocean sciences.

Categories and Subject Descriptors (according to ACM CCS): Human-centered computing → Visualization → Visualization
application domains→ Scientific visualization

1. Introduction

Seaweeds or macroalgae are important sources for a variety of
biofuels, and thus can potentially meet the global demand for al-
ternative sources of renewable energy. Large-scale cultivation of
macroalgae can supply 10% of the United States’ transportation
energy demands [WMB∗19]. However, successful fuel production
from such farms depends on ambient ocean hydrodynamics and the
availability of the right proportions of essential nutrients. Scientific
studies of these factors can be performed using large-scale compu-
tational simulations, modeling ocean hydrodynamics and concen-
tration of essential nutrient and chemical compounds. Within the
Energy Exascale Earth System Model (E3SM) [PADB∗19], scien-
tists are trying to study ocean biogeochemistry (BGC) [MDK∗01,
WMB∗19] by using the high-resolution Model for Prediction
Across Scales Ocean (MPAS-O) [RPH∗13]. The high-resolution
spatial data generated by the simulation model is comprised of mul-
tiple physical variables such as concentration of essential nutrients
like nitrate, ammonium, phosphate, iron, silicon as well as other
organic and inorganic biogeochemical compounds along with vari-
ous hydrodynamic variables as illustrated in Figure 1. Understand-
ing how these variables (e.g., different nutrient concentrations) are

Figure 1: Multivariate Ocean BGC data set comprising of 75 phys-
ical variables including concentration of essential nutrients, vari-
ous organic and inorganic compounds along with other measure-
ments from the simulation.

related is a crucial step in many multivariate analysis tasks which
involve correlation analysis, association analysis, and query-driven
analysis, just to name a few [STpS06, FH09]. However, analyzing
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and visualizing large-scale multivariate simulation data can be a
challenging and non-trivial task because of the high-resolution spa-
tial dimensions, coupled with a large number of physical variables
to take into consideration during analysis.

An effective strategy to address the challenges associated with
large-scale simulation data is to first decompose the high-resolution
spatial domain into smaller contiguous regions [DWS∗17,
WKW∗17, HDSC19]. This can help to model complex global non-
linear functions by using piecewise locally linear and simpler mod-
els for each spatial partitions [RS00,KL97,KKW∗15]. While multi-
ple data-driven spatial partitioning schemes (both regular and irreg-
ular partitioning) exist for univariate data, to the best of our knowl-
edge, not many partitioning schemes exist for multivariate data with
large number of variables. In this paper, we propose a novel spatial
data partitioning scheme for multivariate data which takes into con-
sideration the inter-variable relationships to create partitions where
the corresponding multivariate data can be modeled and analyzed
by using linear models.

Our proposed partitioning scheme is built on top of the simple
linear iterative clustering (SLIC) algorithm [ASS∗12] to create ir-
regular shaped partitions and utilizes probabilistic principal com-
ponent analysis (PPCA) [TB99] to capture the multivariate rela-
tionships. SLIC algorithm operates on local spatial regions of the
data to generate irregular partitions such that the data within each
partition can be modeled by a linear model such as principal com-
ponent analysis (PCA). Among its many other advantages, proba-
bilistic formulation of classical PCA allows us to evaluate the like-
likhood of a PCA model. We utilize this property of PPCA to de-
sign our new spatial decomposition scheme for multivariate data to
create partitions with homogeneous variable relationships. We also
performed extensive evaluation of our proposed scheme with other
possible choices of regular and irregular partitioning schemes to
identify the advantages and disadvantages of these methods across
different multivariate analysis tasks. We applied our partitioning
scheme on multivariate Ocean BCG data with 75 physical variables
to study the local variable relationship among essential nutrients in
different regions of the ocean and validated the analysis results with
expert feedbacks. To summarize, the main contribution of our work
are as follows:

1. Proposed a multivariate relationship guided irregular spatial do-
main partitioning scheme.

2. Performed extensive evaluation of different spatial partitioning
schemes for multivariate data analyses.

3. Applied our approach on multivariate Ocean BCG data to study
nutrient relationships across different regions of the ocean.

2. Related Works

Multivariate data analysis and visualization for scientific simula-
tion data is a well researched topic. Extensive reviews and sur-
veys about the state-of-the-art for multivariate scientific visual-
ization exist in literature. Noteworthy among them are the works
of Wong and Bergeron [WB97], and Fuchs and Hauser [FH09].
Many multivariate analysis and visualization tasks are fundamen-
tally based on studying the variable relationships across the spatial
domain. Sauber et al. [STpS06] computed local correlation coeffi-
cient between the variables in a multivariate spatial data and created

multifield graphs to effectively visualize the variable relationships.
Similar correlation-based analysis was performed to enable dif-
ferent query-driven visualizations for multivariate data [BGJA07].
Nagaraj et al. [NNN11] utilized local gradient-based analysis to
measure variable relationships for the purpose of comparative vi-
sualization. Gosnik et al. [GGA∗11] derived special correlation
fields by performing normalized dot product between the gradient
fields of different variables to visualize their relationships. Wang et
al. [WYG∗11] studied causal relationship among variables by using
transfer entropy methods. Biswas et al. [BDSW13] proposed spe-
cific mutual information metrics to study surprise and predictability
of different variables in multivariate data and thereby enrich corre-
sponding multivariate visualizations. Jänicke et al. [JWSK07] pro-
posed different local statistical measures quantifying variable rela-
tionships to highlight informative regions in their visualizations.

Intelligent decomposition of the spatial domain into smaller
regions have various applications and use-cases for scientific
data analysis and visualization. Particularly for large-scale high-
resolution simulation data sets, spatial partitions help to make
the analysis tasks more manageable and scalable. Hazarika et
al. [HDSC19] used regular partitioning schemes to decompose the
spatial domain such that linear relationship models like Gaussian
copula function [HBS18] can be employed to model variable rela-
tionships. Dutta et al. [DCH∗17] utilized regular block-wise local
Gaussian mixture models to study flow instability and track fea-
tures for jet turbine simulation data. They also proposed an irregu-
lar spatial data partitioning scheme [DWS∗17] to model univariate
data based on simple linear iterative clustering algorithm [ASS∗12]
to create homogeneous region for distribution-based data model-
ing. Besides, there are multiple such examples of spatial data par-
titioning to achieve scalable analysis of large-scale simulation data
analysis and visualization [WKW∗17, HBW∗20, DS15, WHLS19].
However, most of this methods perform a naive partitioning of
the domain or use some univariate data property to create intelli-
gent partitions. Our proposed probabilistic PCA based partitioning
scheme is an attempt to come up with a variable relationship guided
spatial decomposition method to facilitate multivariate analyses.

3. Proposed Approach

Our proposed multivariate data partitioning scheme combines prob-
abilistic principal component analysis (PPCA) with an irregular
spatial decomposition algorithm called simple linear iterative clus-
tering (SLIC). The resulting partitions are such that the multivariate
data within each partition can be modeled by simple linear models
for detail analyses. In this section, we first briefly explain the con-
cept of PPCA and how it serves our data partitioning objectives.
We then elaborate on the details of our partitioning schemes.

3.1. Probabilistic Principal Component Analysis (PPCA)

PPCA [TB99] is a probabilistic formulation of the classical
PCA [Jol86]. While the classical PCA is based on mapping high-
dimensional observed data space to low dimensional latent space,
the PPCA framework is based on mapping from a latent space to the
data space. The graphical representation of this probabilistic model
is shown in Figure 2 for a dataset of N observations, where x is
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Figure 2: Graphical model representation of PPCA for a data set
with N high-dimensional observations of X, where each observa-
tion xn is associated with value zn of the low-dimensional latent
variable Z

high dimensional (d-dimensional) multivariate observed data and z
is the corresponding low-dimensional (q-dimensional, and q < d)
latent space data. xn and zn in Figure 2 represent the random vari-
ables for individual instances of N data-points.

The latent variable model for PPCA is framed over the general
formulation of PCA as factor analysis, which can be stated as,

x = Wz+µ+ ε (1)

where, the parameter W is a d× q matrix relating the two set
of variables, the parameter µ permits the model to have non-zero
mean and ε models the noise in this linear transformation. In PPCA,
the prior over the latent variable z is given by a zero-mean unit-
covariance Gaussian, i.e., z∼N (0, I). The noise is modeled using
an isotropic Gaussian noise model, i.e., ε ∼ N (0,σ2I), where the
parameter σ

2 governs the noise variance.

Given these Gaussian priors over z and ε, the probability distri-
bution of the observed variable x conditioned over the latent vari-
able z in conjunction with Equation 1 can be stated as,

x|z∼N (Wz+µ,σ2I) (2)

Likewise, the marginal distribution over the observed variable is
Gaussian, which can be readily obtained by integrating out the la-
tent variable in Equation 2 and is given by,

x∼N (µ,C) (3)

where, the observation covariance model is specified by
C = WWT +σ

2I. The corresponding log-likelihood for this prob-
abilistic model for N data-points is given as;

Lpca =
N

∑
n=1

ln p(xn)

=−N
2
{d ln(2π)+ ln |C|+ tr(C−1S)}

(4)

where, S is the sample covariance matrix of the observed data
given by,

S =
1
N

N

∑
n=1

(xn−µ)(xn−µ)T (5)

The parameters W, µ, and σ
2 can be estimated by using max-

imum likelihood estimation. To contrast this with classical PCA,
these same parameter values can be obtained in a deterministic

PPCA
n - iterations

Figure 3: High-level illustration of our PPCA guided irregular
partitioning scheme.

manner by eigen decomposition. One of the main advantage of the
probabilistic formulation [TB99] of PCA is the existence of a like-
lihood function (Equation 4). This allows direct comparison with
other probabilistic models and has been used creatively to create
mixture of PCAs to model complex nonlinear relationships as well
as help work with missing data.

In this paper, we utilize this likelihood estimation of PPCA to
propose a variable relationship-driven irregular spatial partitioning
scheme for multivariate data to study intricate nutrient relationships
essential for macroalgae growth.

3.2. PPCA guided Irregular Partitioning Scheme

To create a multivariate data property driven spatial decomposi-
tion scheme, we apply the popular simple linear iterative clustering
(SLIC) algorithm [ASS∗12]. SLIC is widely used in the field of
image processing and segmentation to create homogeneous super-
pixels (a spatially contiguous partition with more than one pixels)
for further downstream image analysis. This has also been adopted
by the scientific data visualization community to create homoge-
neous data partitions for spatial data modeling [DWS∗17]. How-
ever, SLIC works well with univariate data sets or data with limited
variable fields (e.g. the 3 RGB channels in images). For multivari-
ate data with large number of variable fields there is no unique ap-
proach to decompose the spatial domain into regions with homoge-
neous variable relationships.

The SLIC algorithm can be interpreted as a spatially constrained
variant of the k-means clustering where each spatial location (i.e.,
pixels for images) is mapped to a neighbouring group of locations
with similar data properties. The goal of our proposed approach
is to utilize the log-likelihood of PPCA (Equation 4) as a distance
measure in SLIC to identify groups of spatial locations whose un-
derlying multivariate data can be modeled by a simple linear model.

SLIC is an iterative algorithm that starts with regular equal-sized
non-overlapping spatial partitions and incrementally redefines the
partition boundaries based on desired data property to create irreg-
ular data-drive partitions. The steps involved in our PPCA based
partitioning algorithm is outlined below and illustrated in Figure 3.

Step-1: Initialization: Create k non-overlapping clusters or parti-
tions by regularly partitioning the spatial domain. Let Ck be the
centers of these clusters and the initial size of each partition is
S× S. We maintain a label image l and a log-likelihood image
L to keep track of the computation. For a given spatial location
x, l(x) returns the current assigned label based on which parti-
tion/cluster x belongs (i.e., l(x) ∈ {1,2, ..k}). L(x) gives the log-
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(a) Regular Partition (b) K-d Tree Partition

(c) SuperPCA Partition (d) PPCA-SLIC Partition

#PCs #PCs

#PCs #PCs

Figure 4: Minimum number of principal components (PCs) re-
quired to capture 99% explained variance of the original multi-
variate data for individual partitions .

likelihood value of the point x to the PPCA model of the current
partition that it belongs.

Step-2: Iterate till Termination: We then iterate over all k parti-
tions. For each partition we do the following:

• Update label and log-likelihood images: For all location x
within a 2S× 2S window around the center Ck, we compute
the log-likelihood value (Equation 4) of x to the PPCA model
of the current partition data. If this log-likelihood value is
more than L(x) and l(x) 6= k, we update the current label and
log-likelihood images at location x to store k and the current
maximum log-likelihood value.
• Update partitions: Compute the center Ck based on the up-

dated labels of the label image l in the previous step.

Termination: Terminate when clusters remain unchanged after
an iteration or when the threshold of maximum number of itera-
tions is reached.

Step-3: Enforce Spatial Connectivity: Sometimes the assigned
locations of a partition may not be fully connected because the
connectivity is not enforced in the above steps. Just like the tra-
ditional SLIC algorithm, we perform a post-processing step at
the end to enforce spatial connectivity. We examine the labeled
connected components not connected to their partition center Ck
and relabel them so that they are connected to the spatially near-
est partition labels.

The multivariate data for the locations within each resulting par-
tition can be modeled by simple linear models, including PCAs for
further downstream analyses.

4. Evaluation Study and Results

To evaluate the performance of our proposed partitioning algo-
rithm, we compared our approach with other possible spatial data
decomposition schemes for multivariate data. Here is a brief outline
of the three spatial data partitioning schemes that we compared our
approach with.

P1: Regular Blockwise Partitioning: This is a simple yet effec-
tive spatial partitioning scheme widely used as part of many
large-scale data analysis tasks. The spatial domain is divided

into equal-sized non-overlapping blocks of user-defined dimen-
sions. This is a completely data-agnostic approach and does not
take into consideration the underlying data properties while de-
composing the spatial domain. Therefore, they are great at easily
breaking down large-scale problems into smaller sub-problems
but the analysis results may not be necessarily optimal at all
times. In our work, we perform regular blockwise spatial par-
titioning and evaluate the multivariate data within each partition.

P2: K-d Tree Partitioning: K-d tree is a popular data-driven spa-
tial partitioning scheme that employ a top-down sub-division
scheme to decompose the spatial domain. It recursively parti-
tions the spatial domain till a particular data property is achieved
for the underlying data in a partition. We improvised this par-
titioning to address multivariate data and match with our pro-
posed irregular partitioning scheme. In our redesigned K-d tree
partitioning approach for multivariate data, we first create a lo-
cal PCA model with the multivariate data of a partition. Next,
the decision to further decompose a partition is made based on
if a certain q number of principal components (PCs) can capture
say 99% variance of the data. If this criteria is not satisfied for
a partition, we further sub-divide the current partition till either
the criterion is met or the size of the partition has reached the
minimum dimension set for a partition.

P3: SuperPCA: While the above two approaches produce regular
axis-aligned partitions, there are very few irregular partitioning
schemes for multivariate data. Jiang et al. [JMC∗18] proposed a
SLIC based irregular partitioning scheme for hyperspectral im-
age classification. While their approach was applied for images
with different spectral bands, for our evaluation purpose we treat
them as multivariate data. Their proposed approach is called su-
perpixelwise PCA or SuperPCA for short. SuperPCA first cre-
ates a global PCA model on the full resolution multivariate data
and then apply the SLIC based partitioning scheme for univari-
ate data on the spatial field of the first principal component that
captures the maximum variance of the original data. While this
approach may work well for variables with less spatial varia-
tions, for data sets with varying variable fields, using the first PC
field for spatial decomposition may not be a good solution. In
this work, we apply SuperPCA approach to our multivariate data
and compare with our proposed partitioning approach.

4.1. Evaluation Criteria

To compare how well the multivariate relationships are captured
by the individual partitions from different partitioning schemes, we
designed a set of evaluation criteria. The primary goal of the par-
titioning task is to identify spatial regions whose multivariate data
can be modeled and hence analyzed by simple linear models. Uti-
lizing classical PCA models for individual spatial partitions, we
created the following criteria to understand how well the partition-
ing schemes operate on multivariate data.

C1: Capturing Maximum Variance: From the perspective of di-
mensionality reduction, PCA essentially projects the multiple
variables to a new set of uncorrelated variables/dimensions in
the latent space, called principal components (PC’s). The latent
variables or PCs are ordered in such a way that the first few re-
tain most of the variation in all of the original variables. The
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(a) Regular Partition Reconstruction (b) K-d tree Partition Reconstruction

(c) SuperPCA Partition Reconstruction (d) PPCA-SLIC Partition Reconstruction

Figure 5: Visual artifacts of different partitioning schemes after re-
constructing the full multivariate data from the the PCA models of
individual partitions. Here we show the results for the Fe concen-
tration field.

amount of variation captured by a set of PCs is also referred to
as explained variance. This is a useful way to judge how well
the multivariate data is modeled by linear models such as PCA.
The lower the number of PCs required to capture a certain frac-
tion (say 99%) of the explained variance the better the data is
modeled by the PCA model. We use this metric to evaluate the
individual partitions in our proposed partitioning scheme.

C2: Multivariate Reconstruction: Another evaluation metric is
how well the original high-dimensional (d-dimensional) multi-
variate fields can be reconstructed back from the low dimen-
sional latent space representations. In our study, as explained
above in criteria C1, we first identify how many PC’s (say q,
where q < d) are required to capture 99% explained variance
of the original data. Next, we reconstruct the full d-dimensional
multivariate field from the q latent variable space for each parti-
tion. We evaluate the reconstructed fields quantitatively by using
measures like root mean-square errors and qualitatively by look-
ing for any visual artifacts induced by the partitioning scheme.

4.2. Evaluation Results

We performed this study on the Ocean BGC data, which comprises
of 75 physical variables pertaining information of essential nutri-
ent concentrations besides other organic and inorganic compounds.
The spatial resolution of the data is 720× 360. We compared the
performance of the three partitioning schemes (P1, P2, P3) with
our proposed approach based on the evaluation criteria C1 and C2
described above. Figure 4 shows the number of PC’s required to
capture 99% of the explained variance of individual partitions. As
can be seen in Figure 4(d), majority of the partitions created by
our proposed PPCA guided SLIC approach requires about 10 or
11 PC’s (light and deep purple colors respectively) to capture 99%
variance of 75 variables. On the otherhand, majority of the parti-
tions for P1, P2, and P3 (Figure 4a, 4b, 4c respectively) have rel-
atively higher number of PCs to capture the same variance in each
partition. Quantitatively, the respective modes (highest frequency
value) for all the four partitioning schemes, P1, P2, P3, and our pro-

Partitioning Scheme Avg. Error (RMSE) Std. Deviation of Error
Regular Partition (P1) 0.0185 0.0022

K-d Tree (P2) 0.0171 0.0018
Super PCA (P3) 0.0155 0.0024

PPCA-SLIC (proposed) 0.0138 0.0020

Table 1: Quantitative evaluation of the reconstructed multivariate
scalar fields for the four different partitioning schemes. We report
the average root mean square error (RMSE) across all the 75 vari-
ables and their corresponding standard deviations.

posed approach are 13, 13, 13, and 10 respectively. This indicates
that the resulting partitions produced by our approach perform well
in modeling the underlying multivariate data.

As mentioned in criteria C2, another important factor is how
well the multivariate data can be reconstructed from the low dimen-
sional PCA space. Reconstructing the full scalar fields by perform-
ing multivariate reconstruction for individual partitions often intro-
duces visual artifacts near the partition boundaries. This is a mea-
sure of how much data-aware the partitioning scheme was while
decomposing the spatial domain. Figure 5 shows the reconstructed
field of Fe (iron) concentration for the four partitioning schemes
in this work. The zoomed-in images show regions with visual arti-
facts in the reconstructed fields introduced by the partition bound-
aries. As shown in Figure 5(a) and 5(b) for P1 and P2 respectively,
both the regular partitioning schemes display the maximum visual
artifacts. Among the irregular partitioning schemes, our proposed
approach (Figure 5d) performs slightly better than P3 (Figure 5c),
and much better than P1 and P2.

To get a quantitative understanding of how the partitioning
schemes performed during multivariate reconstruction task we cal-
culated the normalized root mean squared error (RMSE) of recon-
structed scalar fields for all the variables. The 75 variable fields
had different values of RMSE after reconstruction. Table 1 shows
the average RMSE scores across all the variables for the four differ-
ent partitioning schemes along with the standard deviation of these
error values. As can be seen, the multivariate reconstruction error is
less for our proposed partitioning scheme as compared to the other
methods. This is another measure to show that the regions identi-
fied by our method can be better modeled by linear models such as
PCA.

4.3. Case Study: Linear Correlation Analysis of Essential
Nutrients

The resulting partitions generated by our proposed multivariate par-
titioning scheme can be used to conveniently study variable rela-
tionships using simple linear models and measures. We used our
proposed partitioning scheme to understand how two of the es-
sential nutrients, namely iron (Fe) and nitrate (NO3), crucial for
macroalgae cultivation, are related (correlated) across the spatial
domain i.e, different regions of the ocean mass. For this, we used
the Pearson Correlation Coefficient (PCC) between Fe and NO3
for the individual partitions. PCC is a popular measure of linear
correlation between two variables and is effective only when the
two variables have a linear relationship. Our proposed partition-
ing scheme decomposes the spatial domain in such a way that the
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(a) Fe concentration (b) NO3 concentration

(c) Pearson’s Correlation Coeff. between Fe and NO3

Figure 6: Case Study: Linear correlation between Fe and NO3 con-
centrations using the Pearson Correlation Coefficient for the in-
dividual partitions. (c) shows how the two essential nutrients are
related across different spatial regions of the ocean.

variable relationships within each partition can be represented by
linear models. Therefore, we can reliably use popular linear mea-
sures such as PCC to study variable relationship across the spatial
domain without using complex non-linear models.

Figure 6(a) and 6(b) show the scalar fields of Fe and NO3 con-
centrations respectively. Figure 6(c) shows the correlation between
these two nutrients across different spatial regions via the partitions
created by our proposed scheme. Pink color indicates regions with
negative correlation between the nutrients and green color high-
lights regions with strong positive correlations.

Domain Expert Feedback: Our experts feel that strong corre-
lations (both negative and positive) in this case indicate ocean re-
gions where there is no nutrient limitation and hence conducive
conditions for growth that are not limited by NO3 or Fe. They feel
that the success of this metric illustrates the capacity to identify
key relationships within the physical-BGC system that can be ide-
ally used in the future for change detection algorithms to identify
climate change effects on BGC processes. Obviously, correlation is
not causation. However, identification of nonlinear tipping points,
e.g., as shown via a rapid change in a correlation metric over time,
is an important need facilitated via the analysis approach presented
herein. As Earth System model process resolution and fidelity in-
creases, our spatial partitioning based analysis will enable identi-
fication of key relationships needed to understand Earth System
evolution under climate changes.

5. Discussion and Limitations

In this paper, we have highlighted the use-case of studying the lin-
ear correlation among variables using the proposed spatial parti-
tioning scheme for multivariate data. Other linear models can also
be utilized to perform analysis of the individual partition data. How
well such linear models can represent the underlying data of a par-
tition also depend on the size of the partition. Generally, smaller

the partition sizes, the better are the chances that the partition data
can be modeled by a linear model. In our experiments with dif-
ferent partitioning schemes, we tried to have consistent number of
partitions and similar average partition sizes. For the regular parti-
tioning scheme, each block was of size 20× 20. With the K-d tree
partitioning scheme we stopped dividing the partition further if one
of the spatial dimension is less than 20. For both of the two irregular
SLIC based methods (superPCA and our proposed method) we ini-
tialize with regular partitions of size 20×20. These ensures that the
overall partition sizes are not very different across the partitioning
schemes during our evaluation study.

We implemented our proposed partitioning scheme using Python
programming language on a regular workstation machine with 2.8
GHz Intel Core i7 processor and 16 GB of memory. The overall
task of decomposing the spatial domain using P1, P2, P3, and our
proposed methods took 0.2 seconds, 4.1 minutes, 3.2 minutes, and
5.8 minutes respectively. Therefore, the naive regular partitioning
schemes is much faster than the other partitioning schemes which
are data property driven. However, the data modeling quantity of
the regular partitions are not up to the mark with the data-driven
schemes as was highlighted in the evaluation studies in Section 4.
One limitation of our proposed partitioning scheme is that at the
cost of better multivariate modeling quality, the computation time
can be slightly higher than other partitioning schemes. However,
there is a scope to make our approach faster by parallelizing the
algorithm because we adopted a bottom-up approach where we ini-
tialize with regular partitions. We can then apply the partition up-
date step of SLIC independently in parallel across the different ini-
tial partitions. Parallel execution may not be a straight-forward im-
plementation for both P2 and P3 because they involve computing
the global PCA of the data which can be a computational overhead
if the data is distributed across computational nodes, as is often the
case for large-scale simulation models.

6. Conclusion and Future Work

In this paper, we have proposed a new spatial partitioning scheme
for multivariate data. We utilized the properties of probabilistic
formulation of PCA along with SLIC-based irregular partitioning
algorithm to create variable relationship-aware spatial partitions.
We extensively evaluated our proposed scheme with other possi-
ble multivariate data partitioning schemes on a multivariate Ocean
BGC data set.

In future, we plan to improve the computational time of our pro-
posed scheme by looking at ways to parallelize different steps of
the algorithm. We also plan to apply our spatial decomposition ap-
proach to perform multivariate data reduction for large-scale sim-
ulation data by storing summary statistics for the individual parti-
tions.
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