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Figure 1: ParaView session with the MPI-GE temperature anomaly dataset, time 1969-07-01. We have loaded the ensemble mean and the
means of two previously computed clusters (subgroups of the ensemble). Left: pipeline and parameter view with our new filter. middle:
ensemble mean overlayed with the features of two clusters. right: simplified ensemble mean overlayed with the corresponding contour tree.
We see cluster agreement in the north west and south east, opposing trends in Africa and India, and several cluster-specific features.

Abstract

The weather and climate research community needs to analyze increasingly large datasets, mostly obtained by observations or
produced by simulations. Ensemble simulation techniques, which are used to capture uncertainty, add a further dimension to the
multivariate time-dependent 3D data, even tightening the challenge of finding relevant information in the data for answering the
respective research questions. In this paper we propose a topology-based method to support the visual analysis of climate data
by detecting regions with particularly strong local minima or maxima and highlighting them with colored contours. Combined
with preceding clustering of the data fields, typical spatial patterns characterizing the climate variability are detected and
visualized. We demonstrate the utility of our method with a study of global temperature anomalies of a 150-years ensemble
simulation consisting of 100 members.

CCS Concepts
* Human-centered computing — Geographic visualization; * Applied computing — Environmental sciences;

1. Introduction sults. At the same time, the probability of capturing rare events

rises. As an example, for capturing a 1000-year flood, i.e., a flood
To capture uncertainty and thereby enhance the practical value of that occurs statistically once in 1000 years, 1000 model years need
weather and climate simulations, ensemble techniques are regularly statistically to be computed. However, large climate or weather en-

applied in both domains today (see e.g. [BTB15] and [BSTS16]). sembles are quite challenging with regard to their computational
The larger ensembles are, the statistically more robust are the re- costs, the storage space needed, and the analysis of the resulting
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large and complex data. The visual analysis of ensemble simula-
tions is generally challenging since the data includes the uncer-
tainty dimension additionally to the spatial dimensions and the tem-
poral one [BPR*15].

This additional dimension is often used to derive a robust ensem-
ble mean field that is presented as the ensemble simulation’s result.
To take the probability distribution of the ensemble into account,
the median or percentiles are also often used to provide a result
range together with the respective probabilities. Further uses are
derived climate indices that can be used to study and communicate
the development of climate extremes.

In this work, we focus on the detection of global climate pat-
terns defined by the position and size of specific regions that show
stronger or weaker signals compared to the global mean. The ap-
proach we take aims to capture the “fingerprints” of distinct climate
patterns one often tries to make out in a dataset and whose presence
has previously only been judged subjectively.

The method proposed in this paper is applicable to single scalar
fields, multi-fields and whole scalar field ensembles. In the latter
case, the visualization becomes a kind of spaghetti plot that po-
tentially suffers from visual clutter. Therefore, in the study in Sec-
tion 5, we build upon a preceding clustering, that summarizes en-
semble members, leaving us with only a handful of fields to com-
pare with each other and against the complete ensemble mean.

2. Background

For this work we used the new "Grand Ensemble" (MPI-GE) of the
Max-Planck-Institute for Meteorology, which is up to date one of
the largest ensemble climate simulations carried out with a compre-
hensive Earth system model (MPI-ESM1.1) using a horizontal grid
resolution of approximately 180 km [Stel5, BSTS16]. In addition
to a 2000 year control experiment, the historical past (1850-2005)
and three future scenarios for the time 2005-2100 (RCP8.5, RCP4.5
and RCP2.6 plus one experiment with 1 percent CO; increase per
year) were simulated with an ensemble size of 100. We chose to
work with the anomaly of the monthly mean temperature at 2 me-
ters height of the historical experiment. In particular, in this paper,
we only deal with 2D domains (like the surface of the earth) but the
method theoretically also works for volumetric data.

The method we propose in this paper is based on scalar field
topology. In the following paragraphs, we give brief explanations
of the concepts needed to understand our approach; generally, topo-
logical analysis has been used in a lot of visualization research, over
which the survey by Heine et al. gives an overview [HLH" 16] also
explaining the methodology quite thoroughly.

An important notion in topology are isocontours. These are sub-
sets of the domain where the scalar function takes on the same
value (the so-called isovalue). In 2D, isocontours are lines that do
not self-intersect and are either closed loops or end on the domain
boundary. A typical example where isolines are used for visualiza-
tion is contour maps that depict the elevation in geographical maps.
See Figure 2 top left for a simple example. Any isocontour encloses
aregion. So, given a specific isovalue, one can find a disjoint set of
such regions. It is often useful to know how many different regions
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Figure 2: Basic concepts used in our approach. Top left: black con-
tours for decreasing isovalues from inner to outer parts of the do-
main. Bottom left: the contour tree embedded in the domain (edges
connecting critical points). Right: the same contour tree visualized
with y-coordinate and color reflecting the scalar values.

exist in a dataset for a certain isovalue and how they are nested
within regions corresponding to another isovalue. In our example,
there are two mountain tips for a high value that are both part of
one larger region for a lower value; going even lower (the white-
blue range), the domain is split into a left and right part and even-
tually the four corners are separated. This merging and splitting is
modeled in the contour tree [GFJT17] that can be computed for any
scalar field. Naturally, its leaves are the extrema in the scalar field,
which is where the regions shrink to a single point as in Figure 2.

3. Related Work

With the increase in available computing power in the past decade
that enabled carrying out ensemble simulations on a routinely ba-
sis, the field of ensemble and uncertainty visualization has received
more and more attention. Section 5.7 in [RBS™ 18] gives an in-depth
overview on the state of ensemble visualization in meteorology.

There are several papers concerned with the detection of fea-
tures in field data and/or the comparison of fields based on them.
The topic is related to the problem of segmentation, i.e. dividing a
dataset into disjoint regions, and therefore to classification of cells
(pixels) in field (image) data. In environmental sciences, such tech-
niques [LWO07] are used to create a thematic map from remotely
sensed data, e.g. different classes of land-use [GMH92].

In meteorology, pattern recognition techniques are used to detect
and track storms, e.g. [Wil81, Hod94, BRTM16]. Here, sometimes
features are just single points, as opposed to regions of some extent,
which we are interested in. In “Extracting Spatio-Temporal Patterns
from Geoscience Datasets” [MMS™*94], the signature of an extra-
tropical cyclone is defined as a set of closed contours surrounding
a minimum in sea level pressure.
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Generally, we follow the approach of Silver [Sil95] in this paper,
who has identified extrema in scalar fields as good seed points for
regions that can be regarded features. Over the years this research
direction has successfully been further pursued. With topologi-
cal analysis, the concept has been rooted in a solid mathematical
framework. In particular, the notion of largest contours [MHS*96]
has specified good boundaries for regions grown from extreme
points. (We give more details about this approach in Section 4.1.) In
the flexible isosurfaces system [CSvdP10] isovalues that are well-
suited for a visualization are selected based on a contour tree that
has been simplified w.r.t. a certain local geometric measure like
volume or height. Features defined as largest contours computed
from a simplified contour tree have also been used to study fluid
flow. To this end, meaningful scalar variables (like vorticity) are de-
rived from the vector field and two [SWC*08] or more [SHCS13]
of them are compared. This includes a quantitative similarity mea-
sure as well as a rendering of the (typically overlapping) respec-
tive contours. In a recent paper [FFST19], Tierny et al. propose a
novel visualization for scalar field ensembles also based on com-
paring critical points. Ensemble climate simulations have also been
analyzed with Pareto sets [HFBG17], a concept similar to largest
contours for multivariate data.

Pattern recognition methods have been used in climate sciences
for different purposes. The works of [Has93, HvSH*96] gained
some publicity due to their political implications; they showed for
the first time with statistical methods that the observed tempera-
ture increase could for a large part be attributed to human activi-
ties causing greenhouse gas emissions. Here, optimal fingerprints,
i.e. scalar fields with maximal signal-to-noise ratio derived from
time-dependent climate simulations, could explain the temperature
changes observed to that date. According fingerprints of simula-
tions only taking natural variability into account, however, couldn’t
explain the observed temperature change patterns.

The method is related to Empirical Orthogonal Functions
[HJSO7], which represent a dataset as a series of scalar fields of
which the first ones capture the most distinguished features of the
dataset while the others are typically disregarded eventually in or-
der to reduce the dimensionality of the original signal. Using clus-
tering (k-means or other algorithms), the individual fields of cli-
mate ensembles have been divided into groups representing differ-
ent climate states or trends [OBJ16, KBL18].

4. Method

In this section we describe our method of computing and visualiz-
ing regions of interest, which we also call features, in scalar fields.

4.1. Computation

The basic idea of our method is that typical patterns found in cli-
mate data are often characterized by the occurrence of extraor-
dinary low or high values in scalar variables such as tempera-
ture, precipitation or pressure in specific regions. This makes lo-
cal minima and maxima good candidates for starting points regard-
ing the search for regions of interest, because they are by defini-
tion lower/higher than their immediate neighborhood. However, de-
pending on the variable chosen, small scale variations cause “false
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Figure 3: Time 1969-07-01 in the MPI-GE dataset, orange cluster
with critical points. Top: raw data; bottom: simplified data, with
feature contours.

positives” to be found, i.e. a large number of local extrema as shown
in Figure 3. To focus on only the relevant points, the high-frequent
noise has to be removed. This is achieved by topological simplifica-
tion [ELZ00,TP12]. This technique basically simplifies the contour
tree by removing some of its vertices, and then adapts the scalar
field accordingly.

There are several criteria imaginable for simplifying the contour
tree. We have chosen the persistence associated with an edge. This
is a measure for the difference (in the scalar variable) between an
extreme point and its “surroundings”, here clearly defined by the
other vertex of the edge. For example, in Figure 2 right, the persis-
tence of a branch is proportional to the vertical space it takes up. We
have chosen persistence over other properties (like size) because
this is actually a good formalization of the idea of “extraordinary
low or high values”. So, at this step, we introduce a parameter to
control the desired persistence threshold. It is bound between zero
and the range of the scalar field; its choice eventually depends on
the dataset and application.

The extreme points that remain after the simplification now rep-
resent regions significantly different from the field around them.
But because the climate phenomena we are interested in are char-
acterized by spatial patterns, we need to further process the located
points. Generally, we find it makes sense that the boundary of a fea-
ture region is defined by an isocontour (as opposed to e.g. a circle
with a fixed radius) so that the feature outline respects the underly-
ing field data, This raises the question how to determine a suitable
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isovalue for each feature. At one end of the spectrum of sensible
values is the value at the extreme point itself; this would yield a
theoretically infinitesimal small region. Concerning the other end
of the spectrum, there is the notion of largest contours [MHS*96]:
For an unambiguous assignment of domain space to feature region
and for an eventually easily readable visualization, it is desirable to
have the contours not intersect each other. If f is the scalar function,
and (p,q) and (g, r) are edges in the contour tree, p and r being ex-
trema and g being a saddle point, then f(g) =: & is the value that
defines the largest such isocontour (the contours of p and r touch
at g). This is by far the most common case we have encountered in
practice; should a minimum and maximum be directly connected
(as in Figure 5 bottom right), we define & := (f(p) + f(r))/2. Be-
cause we do not look for a comprehensive segmentation of the do-
main, and too large regions do not fit the idea one has of these
climate features, we introduce a second parameter here, the feature
extent A € [0, 1]; it defines the isovalue o for a feature seeded at p:

o="f(p)-(1—A)+E-A.

Finally, while we regard it a necessary condition for a feature
to be based on a local extremum, one may additionally require a
sufficient size. Therefore we have introduced a third parameter that
filters out those regions which do not have a minimum size, given
relative to the size of the domain.

4.2. Visualization

Being bounded by isocontours, our features are ready to be visu-
alized as isolines in 2D or isosurfaces in 3D. They can be colored
uniformly, w.r.t. the isovalue or depending on the category of the
extreme point. For our figures we chose the latter approach with
blue for minima and red for maxima.

It is possible, especially in 2D, to render isocontours from mul-
tiple fields in one image, resulting in so-called spaghetti plots. We
have applied this technique with the mean fields computed from
ensemble member clusters (see Section 5). Here the opacity of the
isolines can be used as a channel to communicate the size of the re-
spective cluster, such that small clusters are (almost) not reflected in
the visualization while features from clusters with many members
are (fully) opaque. In these spaghetti plots we see (i) similarities
between clusters (common features: multiple contours of the same
color in proximity), (ii) peculiarities of one cluster (unique features:
single contours) and (iii) strong contrasts (opposite features: multi-
ple different-colored contours in proximity). Such a spaghetti plot
can be drawn on top of a colormap visualization of the ensemble
mean. Even though not explicitly computed, the ensemble mean’s
own features will also be highlighted if they occur in at least one
cluster (as in Figure 6, top row); they appear possibly even more
prominent in case (i).

4.3. Implementation

We have implemented the feature computation using the Topology
ToolKit (TTK) [TFL* 18] as a plugin (filter) for the well-known vi-
sualization application ParaView. The visualization of the features
can also be done directly in ParaView, as well as many optional,
augmenting visualizations (scalar field color mapping for the orig-
inal and simplified data, extreme points, contour tree). At the time

you are reading this, the filter may already be included in the offi-
cial TTK release.

The main runtime is spent for the computation and simplifica-
tion of the contour tree; the time spent for the processing of the
typically relatively few feature seed points is negligible in compar-
ison. For our 2D data, results were visible virtually instantaneously
(later time-steps being handled only on demand). The three param-
eters mentioned above can be changed interactively.

5. Results

In this section we present results that we obtained when applying
our method to the the data introduced in Section 2. In a prepro-
cessing step, we computed a clustering as proposed by Kappe et
al. [KBL18]. In this approach, each time step of each ensemble
member is assigned a cluster, to reduce the complexity of large
ensembles and get a quick overview over its temporal develop-
ment. The implementation uses k-means clustering [L1082] where
we experimented with several small values for k& and eventually
found k£ = 5 to yield a good clustering in the sense that the clus-
ters are well-distinguishable from each other while their respective
members are all quite similar. In addition to the exported cluster
means, we have saved an image of the so-called Clustering Time-
line, shown in Figure 4. It indicates that the dataset can roughly be
divided into three phases. In the first phase most ensemble mem-
bers belong either to the blue or the pink cluster; in the second
phase these clusters are superseded by the orange and green (yel-
lowish) cluster; in the third phase the whole ensemble is eventually
assigned the gray cluster.

For all the field visualizations for this section we have used the
same colormap ranging from -3.25 K to 3.25 K in the tempera-
ture anomaly, which is mapped to a blue-turquoise-white-yellow-
red color scheme. For the feature detection in the presented cases,
we set the persistence threshold to 0.35 K. In the following two
sections we use our feature visualization to analyze the overall en-
semble (Section 5.1) and individual time steps (Section 5.2).

5.1. Time-independent

The means of the five time-independent clusters are shown in Fig-
ure 5. The three rows in the figure reflect the three phases revealed
by the Clustering Timeline. Just a glance at the colormap visualiza-
tions tells us that there is a general trend towards a warmer-than-
normal climate.

In general, our feature detection does a good job at detecting the
outstanding regions in the scalar fields (as we judge by “manually”
inspecting the colormap visualizations). The results in the top row
in Figure 5 indicate, however, that the persistence parameter must
be chosen carefully. Eventually it is up to the user, how large the
difference between an extremum and its surroundings must be to
count as a feature. In our example, we have a relatively small scalar
range mapped to a relatively wide range of hues which results in
regions being quite clearly distinguishable from their surroundings
even though there is not much quantitative difference. In such a
case our feature detection can serve as a more reliable guidance
than the first impression of a simple colormap visualization. Com-
pare, e.g., the Pacific Ocean in the top and middle left in Figure 5.

© 2019 The Author(s)
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Figure 4: Clustering Timeline covering the 100 members over all 1861 time steps (155 years) of the MPI-GE dataset.
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Figure 5: The five time-independent clusters computed for the MPI-GE dataset. The respective frame color indicates which cluster from
Figure 4 is shown. Bottom right: the green cluster after simplification.
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The green cluster (middle right) is so “neutral” (flat scalar field)
that after the topological simplification only one minimum and one
maximum is left, which in this case leads to one notable area of
warming around the North Pole and one big negligible area of cool-
ing that covers most of the rest of the planet.

In the image concerned with the last phase of the simulation (bot-
tom left) we see a worldwide warming. Here, several small regions
that are unusually cold are highlighted. Some of these may very
well be important for the person interpreting this simulation result.
Regarding their number and size, however, one might choose to
filter some of them out by adjusting the size parameter.

5.2. Time-dependent

In a “frame-by-frame” analysis of time-dependent data, for the
computation of cluster means only cluster members that stem from
the current time step are considered (only a vertical slice of the
Clustering Timeline).

Noteworthy about the analyzed ensemble is that during the first
two phases it is divided into two rather contrasting clusters. In the
mean taken over the complete ensemble, these opposing trends of-
ten cancel out. Our feature detection makes this particularly evi-
dent, as can be seen in Figure 6. The ensemble mean for the exem-
plary time step 359 (1880-05-31) exhibits only five features, three
of which close to the north pole which is known to have quite ex-
treme temperatures in these kinds of predictions. The feature detec-
tion for the two dominating clusters (bottom row) for this time step,
however, highlights several regions that are likely to be of interest
for a climate researcher. Among them are the El Nifio and La Nifia
phenomenon (extraordinary warming/cooling in the Pacific Ocean,
central in our maps), similarly contrasting predictions for the Sahel
zone and — only in one cluster — cooling in northern Australia while
its south coast is part of a region that is predicted to get warmer.

In the top right corner of Figure 6 we show a visualization of the
ensemble mean field in the back, overlaid with the features found
in the clusters. One can see the benefits of this approach: In a single
picture the overall ensemble prediction is shown but the regions for
which several members predict extreme conditions are highlighted
by contours, the stroke color encoding whether there is a minimum
or maximum of the scalar field. Partial-transparency of the contours
of a cluster could indicate that its size is relatively small. But here
all lines are completely opaque because the two considered clusters
together make up almost the complete ensemble. We can see that
in some parts (e.g. the northern hemisphere), the outlined features
fit the ensemble mean quite well, although the field values are of
course not as strong as in the respective cluster. Especially the op-
posite features, however, attract the user’s attention. For example,
the El Nifio / La Nifia prediction can be noted and further investi-
gated.

We found the same utility for the second phase. The nodes of
the domain-embedded contour tree in Figure 1 show that there are
only two local minima and two local maxima in the simplified mean
field. This is due to the roughly 50% influence of the rather neutral
green cluster (see Figure 5 middle right). The orange cluster how-
ever contributes several interesting features to the central compari-
son view.

6. Discussion, conclusion and future work

We have found that the approach of deriving features in a scalar
field based on the topology is well-suited for the analysis of climate
data. Local extrema are a reliable characteristic for the patterns of
climate phenomena whose appearance or absence in simulation en-
sembles are crucial for the evaluation of the data. The persistence
and size filters can be used to capture just the right features for a
dataset and the extent parameter works well for adjusting the fea-
ture regions to a reasonable size. Sometimes a good choice of pa-
rameters is tough, though. One threshold value for the simplifica-
tion may not fit every field in a time-dependent ensemble. In order
to detect features in a field with a generally low signal one may
be tempted to lower the threshold but this is likely to lead to sev-
eral false positives in fields with actually strong features. However,
oversimplification (due to a high threshold) can lead to somewhat
unintuitive results as in Figure 5 bottom right.

Several extensions based on this work could be developed in the
future. The feature information could be exploited in a more com-
prehensive, interactive visualization setup; for example on clicking
in the map, the system could tell the user if there are any extreme
events predicted for this place, and if yes, which (how many) en-
semble members contain this feature. To easily customize the fea-
ture detection to a specific dataset or specific research question,
one could probably also use machine learning techniques to learn
good values for the parameters with an expert user initially mark-
ing several feature regions manually. Concerning the MPI Grand
Ensemble dataset, one could move on to analyze the subsets that
cover the next 100 years and compare them with the historical data
studied in this paper.
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