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Abstract
In urban climatology, identifying areas of similar microclimatic conditions helps to relate fine-scale urban morphology varia-
tions to their impact on atmospheric surroundings. Mobile transect measurements yield high-resolution microclimate data that
allow for the delineation of these areas at a fine scale. However, the resulting spatio-temporal multivariate data is complicated
and requires careful analysis and visualization to identify the emergent climatic microenvironments. Our previous work used a
glyph-based visualization to comprehensively visualize spatially aggregated multivariate data from mobile measurements over
diverse routes. This aggregation was conducted over a regular grid, and the utilized glyphs encoded multivariate relationships,
average wind direction during data collection, number of transects traversing a grid cell, and grid cell size. In this paper, we
reduce the visual complexity of the resulting map by coloring the background of the grid cells based on a comparison of the
glyphs. The result is a gridded map that visually emphasizes spatial zones of similar multivariate relationships and that takes
the information encoded by the glyphs into account. A preliminary evaluation shows that the described approach yields zones
that line up with the physical structure of the study site.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.8]: Applications—; Computer Applications
[J.2]: Earth and atmospheric sciences—

1. Introduction

Classifying a region into areas of similar climate characteristics has
a long tradition in atmospheric sciences. On the global scale, the
Köppen-Geiger classification structures the entire globe into zones
of clearly distinguishable environmental conditions, based on veg-
etation groups, temperature regimes, and precipitation [KGB∗06].
Similarly, Sayre et al. [SDF∗14] delineate ecological land units on
a global scale by aggregating bioclimate, landforms, lithology, and
land cover data layers. At a smaller scale, the classification of ur-
ban areas into so-called climatopes is used to create urban climatic
maps [RNK11, RSL∗12]. Here, several information layers includ-
ing urban morphology, land use, or atmospheric data, are combined
to facilitate climate-sensitive and sustainable urban planning. Re-
cently, the concept of local climate zones (LCZ) was developed by
Stewart and Oke [SO12]. In this classification scheme, urban sites
at the local scale are characterized using their morphological ap-
pearance, surface materials, and human activity – properties that
are climate-relevant [SO12, BAB∗15].

For the urban microscale, typically ranging between 1 cm and
1 km [EPW11], a generalizable climate classification was not de-
veloped so far due to the complex dynamics of microclimate. Mo-
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bile transect measurements can be used to retrieve fine-scale data
to contribute to such classification efforts [HSvH∗14,PLCC16]. To
derive an appropriate and general set of distinctive properties for
each class, a large number of observations is required.

The spatial aggregation of mobile measurements, or in more gen-
eral terms, multivariate trajectories, is one step into this direction.
Here, the links between trajectory attributes and the underlying spa-
tial location is of predominant interest, so, following [AA10], each
mobile measurement run can be treated as a sequence of indepen-
dent measurement events [HMRH15, Häb15].

Spatial aggregation becomes easy if the mobile transect mea-
surements are frequently repeated over the same set of routes,
e.g., during larger campaigns using public transportation vehi-
cles [HSW∗14, BSK∗11], or smaller campaigns using more flex-
ible sensor transportation modes [EPP∗12, LBCP15]. For a fixed
route, a variable of interest can be aggregated over a set of way-
points [BSK∗11, EPP∗12], road segments [LBCP15], or a regular
grid [HSW∗14, AAS∗12].

Not all mobile measurements are conducted over a fixed route.
Data crowdsourcing is an example for vaying routes that depend on
the individual movement of the participants. Examples for the lat-
ter cases can be found in [HSST12] and [WAK∗10] for air quality
measurements. Some mobile measurement campaigns use varying
routes to research different climatic phenomena or to increase the
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spatial coverage of the collected data, so that a larger number of po-
tential climatic microenvironments are represented in the samples.
Both is the case for the sample data set used in this study.

In [HMRH15], we developed a glyph-based approach to visu-
ally delineate areas of similar urban microclimate based on mobile
transect measurements traversing varying routes. Since the glyphs
incorporate complex information and are thus also visually com-
plex, interpreting them can be overwhelming. This study extends
the work by [HMRH15], comparing the glyphs and coloring the
background of the grid cells based on this comparison to facilitate
the detection of potential climatic microenvironments [Häb15].

2. Mapping Approach

2.1. Spatial aggregation and glyph design

Similar to [AA08], [HMRH15] spatially aggregate the transect runs
using a regular grid spanned over the bounding box of all tran-
sect routes. For each grid cell and individual transect run, mea-
sured attributes are averaged over the area covered by the grid cell
and normalized according to their individual value range. A self-
organizing map (SOM) [Koh90] is trained based on the aggregated
and normalized values and partitioned using K-Means Clustering
[VA00, WBS13]. In contrast to our previous work [HMRH15], we
do not use the aggregated values of a single, "representative" tran-
sect run to train the SOM. Instead, a subset of the samples from all
transect runs are used, while amount and location of these samples
depend on the grid cell size. In a last step, the categories determined
by the clustering procedure are applied to the entire set of aggre-
gated and normalized values.

A glyph-based visualization shows the result of this aggregation
approach; each traversed grid cell is assigned one glyph (Fig. 1).
Following [HMRH15], the glyphs encode:

• the number of transects traversing that grid cell; each transect
run is represented by one glyph segment

• the cluster membership of the run traversing that grid cell, en-
coded by the color of the corresponding glyph segment, whose
meaning can be explored by means of a parallel coordinates
plot [GCML06, VJN∗15] (Fig. 1a)

• wind direction during data collection, given by the orientation of
the corresponding glyph segment

• the grid cell size, which is proportional to a glyph’s radius.

2.2. Glyph comparison and mapping technique

The research described in this paper is based on a mobile transect
measurement data set with 21 runs. The data were recorded in a
residential neighborhood in Gilbert, Arizona, USA and cover dif-
ferent times of day in three different seasons. Air temperature (Ta)
and relative humidity (RH) were recorded in two different heights
(1 m and 2 m), along with surface temperature (Ts). The transects
follow partially diverging routes [HMRH15].

To create a glyph map as described in Section 2.1 and as shown
in Fig. 1, 2, and 3, we used the following setup:

• Considered variables: Ts; RH1m; Ta,1m; RH2m; Ta,2m
• Grid cell size: 30
• SOM height and width: 20

b.

a.

Figure 1: Glyph-based visualization of climatic microenviron-
ments in the Power Ranch community, Gilbert, AZ, USA (back-
ground map: [Env12]). (a) encodes the meaning of the colors used
in the glyphs [GCML06,VJN∗15] (colors based on [HB03]), while
(b) shows a close-up of the glyphs.

• Number of SOM training iterations: 10 x N (N = number of sam-
ples after aggregation)

• Number of K-Means cluster centroids: 6

Fig. 1 reveals a first insight into potential microenvironments in a
study area, and details about the multivariate value distribution can
be explored by zooming into locations of interest. However, the dis-
play lacks a proper guidance on which glyphs share certain proper-
ties, and a structured comparison of glyphs that are located further
apart from each other is difficult. Therefore, we color the traversed
grid cells according to glyph similarity in addition to showing the
glyphs at their location. This way, the distribution of similar grid
cells is summarized, while the advantages of the previously de-
scribed glyph-based visualization are still kept.

Grouping the glyphs according to similarity is complex because
of the categorical nature of their appearance. The latter is given by
the cluster memberships of the glyph’s individual segments, each
representing a certain category of multivariate relationships (e.g., a
segment’s cluster can represent "high surface temperatures and low
humidities"). Another problem arises because the number of seg-
ments per glyph varies between grid cells. Finally, a segment’s ori-
entation and, hence, the distribution of cluster memberships around
a 360◦ circle adds to the complexity.

Therefore, comparing the glyphs to each other requires a way to
characterize their properties. In our solution, this description relies
on the segmentation of the glyphs into eight sectors with a size of
45◦. Per sector, the number of glyph segments is stored with each
of their cluster memberships.

All glyphs in the display are categorized based on this informa-
tion. Glyphs can only fall into the same category if they, for each
sector, share the same amount of glyph segments, and the same dis-
tribution of cluster memberships inherent in these segments. Each
glyph is assigned the resulting category, defined by the description
explained above.

The actual comparison is conducted between these categories.
To determine the amount of similarity, a "distance" between the
glyph categories is defined. Using the cases shown in Table 1, the
glyphs are compared, while corresponding similarity "points" are
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Case Description Graphical summary Points
(per 
sector)

Points
(entire
glyph)

1 - contain the same amount of

segments

- distribution of cluster

memberships is equal

15 w*15

2 - do not contain the same

amount of segments

- the same set of different 

cluster memberships is

available in both glyphs.

12 w*12

3 - do not contain the same 

amount of segments

- the set of cluster memberships

glyph 1 is a subset of the

cluster memberships in glyph 2. 

10 w*10

4 - may or may not contain the

same amount of segments

- the set of cluster memberships

in glyph 1 is different from that

in glyph 2, but there is a 

percentage of agreement

10𝑝𝑎
** w∗10𝑝𝑎

5 - may or may not contain the

same amount of segments

- there is no agreement

between glyph 1 and glyph 2 

in terms of the cluster

memberships

0.01 0.01

6 One sector contains segments, 

while the other does not. 
0.01 --

7 Both sectors do not contain any

segments.
0.01 --

** 𝑝𝑎 =
2∗#𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑔𝑟

#𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠1+#𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠2

#𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠_𝑎𝑔𝑟 = number of segments with agreeing cluster membership 

(1 in the example given in the graphical summary of case 4)

w* = weight factor

Table 1: Metric applied for glyph comparison [Häb15].

summated. The distance between two glyphs, ∆glyph, is then given
by

∆glyph =
1

∑Points
(1)

with ∆glyph = 0 for glyphs of the same category.
The comparison is conducted in two steps. First, entire glyphs

are compared to each other, independent from the described subdi-
vision of glyphs into sectors. The points received for the cases de-
picted in Table 1 are multiplied by a weight factor w that determines
the importance of overall similarity (w = 10 in our solution). Then,
compared glyphs receive additional points for agreement in corre-
sponding sectors, which are added to the overall similarity score.

Both steps are necessary; comparing only sector-wise would
cause large distances between glyphs with the same overall dis-
tribution of cluster memberships, but without agreement in cor-
responding sectors. On the other side, neglecting wind directions
would render glyphs with a diverging circular setup similar. Adding
points for corresponding segments in a sector decreases the dis-
tance between glyphs.

The grid cells are colored based on the pairwise distance be-
tween glyph categories. Sammon’s mapping [Sam69] of the dis-
tances into the HSL color space is used to determine the color,
i.e. grid cells containing similar glyphs are assigned similar col-
ors [VJN∗15, AAS∗12, SR13].

Overall, the results look promising, as can be observed in Fig. 2.
For example, grid cells containing glyphs with combinations of
purple, yellow and red segments consistently appear in a light to
mid purple color, while grid cells containing glyphs with predom-

a.

b.

c.

Figure 2: Coloring the background of each grid cell according
glyph similarity. In (a), the described procedure works well. In
(b), background colors of similar glyphs are too distinct. In (c), a
large variety of different clusters represented in one glyph is shown
(background map: [Env12]; Fig. 1a shows the meaning of glyph
segment colors)

.

inantly orange, green and blue segments are consistently colored
in dark green. If the latter colors are mixed with purple or red,
the background color becomes dark purple. Grid cells contain-
ing numerous segments with a large variety of different clusters,
especially those combining blue, red, and purple appear in blue
(Fig. 2c). Fig. 2a shows that different combinations of cluster mem-
berships lead to different colors, and similar glyphs receive similar
background colors. Thus, the metric described here can be useful
to highlight patterns of similar multivariate relationships, i.e. po-
tential climatic microenvironments.

Fig. 2b reveals cases where the background color is more dif-
ferent as expected. While all glyphs in this detail show orange
segments pointing east, different configurations of cluster member-
ships in the segments pointing west cause the background colors to
diverge significantly. Similarly, grid cells with only yellow glyphs
appear in turquoise, diverging from cells with glyphs combining,
e.g., yellow and purple.

3. Results and Discussion

Fig. 3 illustrates the results of the approach, based on the data set
and initialization described in Section 2.2. A qualitative analysis
suggests that the physical structure of the study site (Fig. 3a) is
represented by the colored grid cells (Fig. 3b). Parks stand out,
showing a distinct pattern of turquoise and purple grid cells ("park
cells"). However, different parks show different signals, owing to
different humidity and temperature regimes. Thus, in the park on
the left side of the study area only few turquoise and purple park
cells appear. Using the corresponding glyphs for further analysis re-
veals that purple glyph segments are underrepresented if compared
to, e.g., the park in the upper right of the map. Grid cells dominated
by buildings and asphalt surfaces are colored dark green ("imper-
vious cells"), showing high surface temperatures and low relative
humidity (Fig. 1a).

Although the glyphs reveal the number of samples per grid cell,
their background colors alone currently do not explicitly repre-
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a. b.

Figure 3: Coloring a map according to glyph similarity to highlight zones of similar microclimate. (a) shows the physical structure of the
study site (Google Earth, 2015), while (b) shows the colored grid cells and the corresponding glyph distribution (background map: [Env12],
see Fig. 1a for the meaning of a glyph segment’s color).

sent the implied notion of uncertainty. The number of segments
per glyph influences its position in the resulting distance field and
therefore also its background color, but same visual cue is used to
represent any other distance as well. This can lead to an ambiguous
perception, if the glyphs are not shown. Therefore, for future work,
we plan to include an appropriate visual cue to the visualization,
while also quantitatively analyzing the described concept of glyph
similarity. Furthermore, we plan to add the temporal dimension of
visualized "zones" into the display.

4. Conclusion

We present an approach for the spatial aggregation and visual-
ization of mobile transect measurements conducted over diverse
routes. A glyph-based visualization summarizes the aggregation re-
sults for each grid cell in a regular grid that was spanned over the
area covered by the entire set of routes, as described in our previous
work [HMRH15].

To visually structure the display, glyph similarity is highlighted
by coloring the background of the grid cells according to a metric
that takes the glyph structure into account. This further facilitates
the detection of climatic microenvironments, and represents a first
step towards delineating climate "zones" at the urban microscale
that are purely based on measured atmospheric variables.
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