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Abstract
Our paper proposes a method for visualizing the spatial distribution of classes for a multi-class image segmen-
tation problem. We apply this method for the case of mountain landscape images, where classes are defined by
landscape categories. The proposed method builds class-specific distribution maps. Our contribution is two-fold.
First, the class-specific distribution maps allow for the visualization of class-specific changes computed from pairs
of images depicting the same landscape at different moments in time. Second, these maps enable us to calculate
prior class probabilities for statistical scene segmentation purposes.

Categories and Subject Descriptors (according to ACM CCS): I.4.9 [Computer Graphics]: Image Representation—

1. Introduction

Monitoring changes in our bio-geophysical environment us-
ing remotely sensed data provides valuable information that
can be used to improve resource and environmental manage-
ment processes, as well as to better understand the human
impact on ecological phenomena [LMBM04]. Visual change
detection consists in identifying and localizing changes in
the appearance and structure of relevant phenomena or ob-
jects over some temporal range.

For instance, remote sensing data have been used to de-
tect changes that are relevant for climate studies, such as
changes in land cover or land use, deforestation, regenera-
tion and selective logging, forest fire and fire affected area,
etc [PL01, JZL∗12]. The development of automatic meth-
ods for change detection has received a lot of attention from
the remote sensing and computer vision communities in
the last decade [LMBM04]. This is due, of course, to the
large amounts of data to be processed for the assessment of
changes.

Very few works have explicitly addressed the topic of
change visualization. In our opinion, this topic deserves an
in-depth study, due to the fact that most climate-relevant
changes tend to be complex in nature. Also, given the high
socio-economical impact of climate change research, it is
imperative to develop visualization methods that construct
a complete, unbiased, data-driven picture of the changes of

Figure 1: Examples of images from the MLP public dataset
[JBC∗14]. Historic and Repeat Images are presented side by
side, as well as their manual segmentations into landscape
categories. The colour code is given in Table 1.

interest. This is consistent with recommendations by Schnei-
der [Sch11], who writes: “images picturing climate do not
simply represent or illustrate information, but in the process
actively produce and shape knowledge.” Our contribution
lies therefore in the “nascent research area” of visual rep-
resentations of climate change [OS14].
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Meta-category Category Color

Forest(F)
broadleaf/mixedwood (B-MW) orange
coniferous forest (CF) dark green
regenerating areas (RA) red

Non-forest (NF)

ice/snow (I-S) light blue
sand/gravel/rock (S-G-R) brown
upland herbaceous (UH) light green
water (WT) blue
wetland (WL) turquoise

Table 1: Landscape categories and meta-categories.

Our paper proposes a method for visualizing the spatial
distribution of classes for a multi-class image segmentation
problem. We apply this method for the case of mountain
landscape images, where classes are defined by landscape
categories (see Table 1 and Figure 1). The proposed method
builds class-specific distribution maps. Our contribution is
two-fold. First, the class-specific distribution maps allow for
the visualization of class-specific changes computed from
pairs of images (historic and repeat) depicting the same land-
scape at different moments in time. Second, these maps en-
able us to calculate prior class probabilities for statistical
scene segmentation purposes. The remainder of the paper
is structured as follows. The following section presents the
proposed approach for computing class-specific distribution
maps. Next, we present and discuss results. The paper ends
with conclusive remarks and an outline of future work.

2. Proposed Approach

2.1. Dataset

Unlike most related work on change detection in remote
sensing (which use either aerial or satellite imagery), we
work with high-resolution photographic images of mountain
landscapes. While aerial photography and satellite imagery
are relatively new technologies, oblique ground photogra-
phy has been used since the late 19th century; thus, it en-
ables us to study changes in landscape over a larger tempo-
ral range. Our database is a subset of the data acquired and
managed by the Mountain Legacy Project (MLP) [Mou14],
which hosts the world’s largest collection of historic moun-
tain photographs (about 140,000), taken between 1888 and
1958. In addition, MLP contains a large number of high-
resolution repeat photographs (about 5,000), which were
manually aligned to their historic counterpart. The resulting
image pairs have been studied for climate change detection,
as well as for a variety of research and management-focused
projects on fire history, vegetation change, human activity
and ecological restoration [RHHM02, MHZM05].

A public database containing a subset of 60 image pairs
(registered repeat and historic photographs), along with their
manual segmentations, has been recently released [JBC∗14,
JBC∗15]. The manually segmented images consist of labels
assigned to every pixel in the image, where the label denotes
the landscape category. This paper works with the manual

segmentations from this public database in order to build
category-specific spatial distribution maps as well as prior
probabilities. Only the bottom half of the manual segmenta-
tions has been considered in the computation process, as the
top half contains some irrelevant information (i.e. a signifi-
cant amount of sky).

2.2. Computation of spatial distribution maps and prior
probabilities

Input data for the computation process consists of two se-
quences of images corresponding to manual segmentations
for the historic and repeat images, with the top half of each
image removed. The images in these sequences are denoted
by It,`(u,v), where t represents either historic (H) or repeat
(R) images, and ` = 1,2, . . . ,L, with L = 60. The value of
image It,` at location (u,v) is the label k of a certain land-
scape category, with k = 1,2, . . . ,K. The size of an image is
denoted as Ut,` ×Vt,`. The total number of landscape cate-
gories is K = 8, as shown in Table 1 and Figure 1.

Let µt,k,`(i, j) denote the S×S spatial distribution map of
category k for image It,`, where i, j = 1,2, . . . ,S. This map
represents a division of the image It,` into S × S blocks of
pixels, and the map value for bin (i, j) is the number of pix-
els belonging to category k within the corresponding image
block:

µt,k,`(i, j) =
b(i,U`)

∑
u=a(i,U`)

b( j,V`)

∑
v=a( j,V`)

δt,k,`(u,v), (1)

where

δt,k,`(u,v) =

{
1 if It,`(u,v) = k
0 otherwise,

(2)

and

a(x,Z) =
⌈

Z(x−1)
S

⌉
, b(x,Z) =

⌊
Zx
S

⌋
. (3)

Here, the Kronecker delta δt,k,`(u,v) allows for a compact
expression of the fact that only pixels belonging to cate-
gory k and located inside the block corresponding to the map
bin (i, j) will contribute to µt,k,`. The functions a(x,Z) and
b(x,Z) define respectively the starting and the ending index
of an image block along one dimension of the image with
respect to bin index x and image dimension length Z.

Let Mt,k(i, j) denote the total spatial distribution map,
which is computed by summing up image-specific distribu-
tion maps µt,k,` over the entire dataset (` = 1,2, . . . ,L) for
images of type t:

Mt,k(i, j) =
L

∑
`=1

µt,k,`(i, j). (4)

Using the total spatial distribution map for historic images
MH,k(i, j) and the total spatial distribution map MR,k(i, j)
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Figure 2: Category-specific heat map for repeat images

for repeat images, it is possible to compute a difference map
of spatial distribution for category k as follows:

Dk(i, j) = MR,k(i, j)−MH,k(i, j). (5)

Subtracting the historic map from the repeat map allows for
representing the changes for a category k at spatial location
(i, j) as a negative value if there are less repeat pixels for that
category than historic pixels, and as a positive value if there
are more repeat pixels than historic pixels.

The spatial distribution maps also allow for a straightfor-
ward computation of prior probabilities for every category k

Figure 3: Category-specific heat map for historic images

in function of the image height i and image type t:

Pt,k(i) =
1

Nt,k

S

∑
j=1

Mt,k(i, j), (6)

where Nt,k = ∑
S
i=1 ∑

S
j=1 Mt,k(i, j). The summation occurs

along the horizontal axis because the most significant vari-
ations in landscape occur as a function of altitude (vertical
axis).

3. Results

The category-specific spatial distribution maps computed
with S = 50 for the repeat and historic images in the MLP
public dataset are shown in Figure 2 and 3, respectively;
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Figure 4: Spatial distribution map of intra-category differ-
ences. Blue means more pixels in repeat images than in his-
toric images, and red means less pixels in repeat images.
White means nothing has changed.

a heat map is used for visualization purposes. A simple
pixel-wise difference process allows for the computation of
the difference map in Figure 4, which illustrates category-
specific changes using a blue-red colormap. While this map
is generated for the purpose of visualization by experts in
environmental studies, earth sciences, climate etc. the non-
expert viewer may also observe some salient characteristics
of these maps. For instance, the ice-snow category shows
no blue, therefore one may state that the amount of ice and
snow has clearly decreased in all repeat images with respect
to their historic counterparts. Another difference map which

Figure 5: Category-specific prior probabilities

is easy to interpret is the one corresponding to the conifer-
ous forest; the deep blue regions in its upper part show that
the tree-line has advanced towards the summit, which is an
indicator of climate change according to [GBN02].

Landscape categories occur with variable frequency in our
database. The coniferous forest is one of the most frequent,
while the broadleaf-mixedwood, water, and wetland might
be completely missing from some images. To design auto-
matic segmentation methods of these categories based on
statistical models, one needs to take into account prior prob-
abilities for all categories. These prior probabilities are com-
puted with Equation 6 and shown in Figure 5.

4. Conclusion

This paper proposes a novel visualization method for
changes occurring within mountain landscape images pho-
tographed at two different moments in time. The mountain
landscapes represent complex scenes, so changes need to be
assessed for each landscape category. Using a new public
dataset, we build category-specific spatial distribution maps,
and derive prior probabilities for each category. The dif-
ference of the distribution maps is useful for the qualita-
tive evaluation and visualization of changes, while the prior
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probabilities serve to design robust automatic segmentation
methods based on statistical models. Future work will fo-
cus on the design of such automatic segmentation algorithms
that will outperform the baseline segmentation algorithms
proposed in [JBC∗15].
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