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Abstract

Mobile transect measurements retrieve high-resolution observations revealing the spatial variation of atmospheric
properties throughout an urban landscape. A sensor platform is moved through a study site with varying urban
form, collecting a data set that can be used to investigate the multifaceted impacts of different building and land-
scape configurations on atmospheric properties. To generalize such findings, it is imperative to include transect
runs representing different points in time and potentially different meteorological background conditions. How-
ever; the analysis of a set of mobile transect measurement runs is challenging because of the strict spatio-temporal
dependence and multivariate nature of each recorded sample. In this study, we provide visual support for the iden-
tification of coherent climatic microenvironments within a study site using mobile transect measurements taken at
different points in time and over diverse routes. A regular grid is used to spatially aggregate the data, and resulting
summaries are classified according to similar multivariate relationships using clustering techniques. Finally, each
grid cell is visualized using a radial glyph encoding cluster membership, predominant wind direction for each
transect run, and the number of transect runs traversing this grid cell. The approach has been tested using a data
set recorded in Gilbert, Arizona, USA, and it shows potential to identify spatially contiguous regions of similar
microclimate.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [1.3.8]: Applications—; Computer

Applications [J.2]: Earth and atmospheric sciences—

1. Introduction

Mobile transect measurements are frequently used in urban
climatology to gain insight into the spatial variation of at-
mospheric properties. Based on the resulting observations,
conclusions can be drawn about the impact of urban form
on the surrounding climate [CPMB11, HSvH* 14, SBC*09].
However, a single transect is not sufficient to generalize such
findings because it represents a single meteorological back-
ground condition. Data has to be sampled repeatedly, result-
ing in a spatially dependent, multivariate, time-varying data
set, which is difficult to analyze.

Aggregation techniques can be used to reduce the com-
plexity of a mobile measurement data set and to facilitate
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reasoning about coherent local climate zones showing a sim-
ilar value distribution over time. These zones share a coher-
ent relationship between land use/land cover (LULC) and
microclimate [SO12]. One approach to explore the multi-
variate and spatio-temporal information contained in a mo-
bile transect data set could be to extract a multivariate time
series for each sample location on a transect route, which
could then be used to partition the underlying space into seg-
ments of similar temporal value distribution. This, however,
is only possible if the observation routes are spatially identi-
cal.

This paper investigates an approach to comprehensively
visualize data resulting from multiple transect runs over
diverse routes. The overall goal of the visualization is to
support the exploration of potential areas of similar multi-
variate value behavior under varying meteorological back-
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ground conditions. The approach is based on the spatial
aggregation of multiple transect runs over a regular grid.
Multivariate relationships are classified separately for each
transect run using a combination of the self-organizing
map (SOM) [Koh90] and the k-means clustering algorithm
[WBS13, VAOO]. Thus, per grid cell, we gain a summary
about the multivariate behavior of all observations taken
within this spatial compartment. To visually encode this in-
formation, we designed a glyph that represents the number
of transect routes crossing the grid cell, their respective clus-
ter membership at this location, and the wind direction that
has been predominant during data collection in the field. The
approach is implemented into TraVis, our framework for the
visualization of mobile transect measurements [HMRH15].

2. Theoretical background and related work

Mobile transect measurements are a multivariate geospatial
movement data set. Thus, each transect is a trajectory with a
set of spatial locations S = {sq,...,5,}, a time stamp #; € T
associated with each s;, and further attributes Ag .. ,,, whose
elements are either static over the entire trajectory or change
dynamically with S and T [AAO8, TSAA12].

Andrienko and Andrienko [AA10] describe a general
framework for the aggregation of movement data sets.
They distinguish two different views on movement: The
trajectory-oriented view, which focuses on the movement
of single entities, and the situation-oriented view, which fo-
cuses on the state of the entities at one or more points in time.
For each of these two views, they give recommendations
about applicable aggregation techniques, which are again
based on two different views of space: The space-centered
view, focusing on the space in which the movement occurs,
and the entity-centered view, focusing on the movement it-
self. According to this theoretical framework, our analy-
sis purpose corresponds to the category space-centered and
situation-oriented, since we are interested in the relation-
ship between trajectory attributes at certain points in time
and space.

The traffic-oriented view on a car data set in Milano
[AAO8] is closely related to our visualization approach. The
authors suggest to partition the space using a regular grid
and to aggregate the data over each grid cell. The aggrega-
tion results are visualized using either small multiples show-
ing the frequency of car traverses per grid cell and time step,
or — similar to our solution — using radial glyphs that encode
the traffic intensity per movement direction. Scheepens et
al. [SWVDWvW11,SWvdW*11] combine multiple density
maps to provide a comprehensive overview over multivari-
ate movement data sets. In a later study [SvdWvW14], they
use pie charts as glyphs on top of a map to summarize the
number of certain objects, their heading, and the proportion
of stationary objects within a spatial compartment. Bak et
al. [BMJKO09] aggregate their episodic movement data set
using growth-ring maps. Also dealing with episodic move-

ment data, Andrienko et al. [AAS™12] classify spatial sit-
uations by clustering feature vectors representing presence
counts per location.

3. Methodology

3.1. Spatial aggregation of multivariate mobile transect
measurements

A natural approach to spatially aggregate a set of trajectories
is to partition the space into compartments and to summarize
data collected for each of these compartments [AA08, Svd-
WvW14]. In our solution, a regular grid is spanned over the
bounding box of all transect routes. Since spatial scale plays
an important role during the analysis, the size of the grid
cells can be adapted to the scale under investigation (Fig. 1).
The observations are averaged separately for each transect
run and each variable over each grid cell. Furthermore, to
guarantee comparability of data sampled at different points
in time and data represented in different units, all samples
belonging to one transect run and one variable are scaled to
the interval [0, 1] based on their individual value range.

on (quadratic grid cols):

Figure 1: Aggregating data over a regular grid.

Since the transect routes vary, the number of mobile mea-
surement runs traversing a grid cell also varies. Thus, an ap-
propriate aggregation and visualization technique has to take
this asymmetry into account. Since the overall goal of this
study is to identify spatially coherent climatic microenviron-
ments, data is clustered based on a user-defined set of vari-
ables. A combination of the SOM [Koh90] and the k-means
clustering algorithm is applied to find a semantically mean-
ingful structure within the data set [VA0OO, WBS13]. The
SOM has been implemented roughly following [Koh90], us-
ing a rectangular grid. The initial cluster centroids for the
k-means clustering are selected randomly.

In previous work [HMRHI5], this technique was suc-
cessfully used to partition a single transect measurement
run into segments of similar multivariate relationships. In
the current study, we make use of this finding and use the
cluster membership of each aggregated sample as a sum-
mary measure for multivariate behavior at the correspond-
ing spatial location. Since the SOM is computationally ex-
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pensive, it is trained based on one, user-defined exemplary
transect run, and then partitioned using k-means cluster-
ing [VAOO, WBS13]. The quality of the partition can be ex-
plored using a parallel coordinates plot, which shows the
clustering results as applied to the exemplary transect run.
In this plot, classes are color-coded with a qualitative color-
scheme [HBO3] and can be brushed. If the user is not sat-
isfied with the current partition, the number of cluster cen-
troids for the k-means clustering can be interactively refined.
Once the partition of the exemplary transect run is finished,
the clustering results are applied successively to all other
transects available in the data set.

The disadvantage of this approach lies in the potential sen-
sitivity of the result on the selection of the first, "represen-
tative" transect run. Theoretically, it has to be chosen based
on the number of distinct multivariate value combinations,
which can then be classified appropriately and detected in
subsequently added runs. A preliminary sensitivity analysis
confirmed this hypothesis, and we are currently conducting
further research on this issue.

3.2. Visualization approach and glyph design

To visualize this data on a map, a glyph is assigned to each
grid cell that has been crossed at least once. The glyph was
carefully designed to encode the...

e R1:..number of transect runs traversing the grid cell.

e R2: ...cluster membership for each transect traversing it.

e R3: ..predominant wind direction during the time the
transect has been conducted.

e R4: ...grid cell size over which the data has been aggre-
gated.

Color:
Cluster
membership

Predominant wind
direction

Fixed angle offset

Adapted angle offset

Figure 2: Glyph design.

The number of clusters (R1) has to be included into the
glyph to enhance the perception of uncertainty associated
with the visualization. If only one sample is responsible
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for the appearance of a grid cell, the reliability of conclu-
sions drawn from this representation is reduced. Encoding
the cluster membership for each transect traversing a grid
cell is also mandatory for the visualization (R2) because it
reveals information about multivariate relationships found
at this location. The predominant wind direction for each
transect traversing the grid cell (R3) can give further hints
about the relationship between the values measured at this
point and the LULC upwind. This holds especially true for
atmospheric attributes, whose spatial distribution is depen-
dent on mixing processes [Sch94]. Finally, the grid cell size
(R4) hints at the spatial resolution of the resulting aggrega-
tion.

Figure 2 shows our glyph design in a schematic way. A
circular layout is used, since this design enables us to eas-
ily encode the predominant wind direction at sampling time
(R3) by the orientation of sectors. These sectors are cre-
ated by applying a fixed offset angle left and right of the
vector pointing into the wind direction, which is in our im-
plementation given by the predominant wind direction mea-
sured at four weather stations surrounding the study site
[Mes15, HMRH15]. The number of transect runs traversing
the grid cell is encoded by the number of sectors arranged
around an inner circle, fulfilling R1. Color coding these sec-
tors according to the cluster membership fulfills R2. If two
sectors would overlap due to similar wind directions at sam-
pling time, the sector border between these two sectors is
moved to the half-angle between the two respective wind di-
rections. The grid cell size (R4) is proportional to the radius
of the circle, which also prevents spatially adjacent glyphs
from overlapping.

4. Use Case

The visualization was tested using a mobile transect mea-
surement data set collected in a residential neighborhood in
Gilbert, Arizona, USA. The data set was recorded on four
different days in May 2014, September 2014, and February
2015. It consists of 21 transect runs with an average of 4333
sample points. For analysis, we considered five variables:
Surface temperature, 1 and 2 m air temperature, and 1 and
2 m relative humidity.

As an exemplary transect run, we choose a run that has
been conducted at September 15, 2014, at 0700 LST. It tra-
verses a longer route, covering a potentially large number of
different multivariate value configurations. The grid cell size
is chosen to be 30 m. For the SOM, we use a field of 10 x 10
neurons and let the training run over N * 10 iterations (N is
the number of grid cells traversed by the exemplary transect
run). Then, we apply a k-means clustering over 6 cluster cen-
troids. Using the parallel coordinates plot, we find that the
data was well-partitioned into distinct classes of multivari-
ate relationships (Fig. 3a).

Then, we use the clustering results to classify the spa-
tially aggregated data belonging to all other transect runs.
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Figure 3: a. Brushed parallel coordinates plots to visualize the meaning of the clusters. b. The glyphs combining the entire set
of mobile transect measurements on a map (background map: [Envi2]).

In the resulting visualization (Fig. 3b), we can identify sev-
eral patterns: First, it is obvious that the wind never comes
from northerly directions. Second, red classes, associated
with high surface temperatures, low humidities, and high air
temperatures, appear frequently over asphalted areas and be-
tween arrays of houses, as would be expected for this kind of
environment. Third: The yellow cluster, associated with low
surface temperatures, high humidities and relatively low air
temperatures, can predominantly be found in parks.

Coherent climatic microenvironments can qualitatively be
identified by searching for patterns of predominant colors.
However, this does not necessarily hold true for glyphs com-
prising a large number of different colors. In this case, it is
not clear, whether the distinct clusters only correspond to the
wind direction alone or also to other meteorological back-
ground conditions at sampling time, e.g., because the com-
partment joins data belonging to different times of a day or
a year.

5. Conclusion and Future Work

In this paper, we described a visualization approach to vi-
sually identify climatic microenvironments within a study
site based on a number of mobile transect measurements.
‘We partition the space using a regular grid, before we aggre-
gate the data associated with each grid cell by classifying it
according to multivariate relationships and visualize it using
radial glyphs. The glyph design enables the synchronous vi-
sualization of (a) the number of transect runs that contributed
to the glyph, (b) the predominant wind direction at recording
time, (c) multivariate relationships, and (d) the grid cell size.
It supports forming hypotheses about the impact of urban de-
sign on microclimate, while also taking local data sparseness
into account.

For our future work, we plan to explicitly incorporate the
position of each transect in a temporal cycle, such as time of
day or time of year, both of which are meteorologically rele-
vant. Since our glyphs do not provide sufficient space to ad-
ditionally encode this information, we plan to add a filtering
capability that can be used to brush the glyphs on the map.
We are also currently investigating the automatic computa-
tion of coherent microenvironments based on a metric that
describes the similarity of the glyphs to each other. Based
on this metric, we also aim at quantifying the sensitivity of
the algorithm to different input configurations.
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