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Abstract

We compared content-independent eye tracking metrics under different levels of language-induced mental load in virtual reality
(VR). We designed a virtual environment to balance consistent recording of eye data with user experience and freedom of action.
We also took steps towards quantifying the phenomenon of not focusing exactly on surfaces by proposing “focus offset” as a
VR-compatible eye metric. Responses to conditions with higher mental load included larger and more variable pupil sizes and
less fixations. We also observed less voluntary gazing at distraction content, and a tendency of looking through surfaces.

CCS Concepts

¢ Human-centered computing — Virtual reality; HCI theory, concepts and models;

1. Introduction

The relation between cognitive states and eye behaviors has been
identified in many studies [Bea82]. In this work, we analyze quan-
titative eye data to identify mental load in users of virtual reality
(VR) during a language task. We considered five of the most com-
monly used eye metrics [WCP*21]. Pupil size is known to increase
with mental load [Bea82]. Blinks were found to play a role in
blocking out visual input to reduce distraction while thinking. Fixa-
tions are the times at which gaze velocity and acceleration stay be-
low a predefined threshold, while saccades happen when the gaze
wanders around and breaks this threshold. Eye vergence refers to
the angle between the right and left gaze directions. It tends to fall
back into a resting pose during internal thought [HLN*19].

In VR, eye behaviors are commonly analyzed at the level of
virtual objects [CKK19]. This can be done by adding colliders
to relevant scene objects and detecting when the user’s gaze hits
their surface. Only few works explore the above metrics in a VR
context, e.g., fixation detection from 3D gaze data. More general,
content-independent metrics [WCP*21] might improve the detec-
tion of cognitive states from eye behaviors in VR. However, it is
not self-evident whether screen-based approaches also apply to VR,
where the conditions for visual perception are vastly different from
looking at a screen in the real world [HGABOS].

We induced mental load in users passively viewing a VR scene
only by aural cues, and then statistically confirmed the generated
mental load from their eye behaviors. We hypothesized that users
listening to speech samples they rated as more difficult to under-
stand would experience high mental load. High mental load would
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Figure 1: The VR scene with the phone booth to walk in.

lead to increased pupil size, longer and more frequent blinks, longer
and less frequent fixations, and more intense and less frequent sac-
cades. We also expected users with high mental load to more fre-
quently have their gaze fall back into a resting pose, as if looking
through/behind the virtual 3D surface they are facing. To measure
this effect in VR, we propose a new metric “focus offset,” which we
define as the mismatch between the virtual 3D surface the user is
gazing at and the actual intersection of the left and right gaze
rays. Finally, we expected high mental load to inhibit users from
voluntarily looking around.

We chose to elicit cognitive load using a listening task primarily
because of two relevant advantages. First, the necessary listening
skills might already be acquired [Kra81], so mental load decreases
the more fluent a person gets. This further moves the extremes of
our mental load scale apart from each other and makes them easier
to distinguish. Second, since there is no visual element required for
listening, eye tracking data can be assumed to represent the com-
mon use case of natural, passive viewing of a VR environment. We
expected this to reduce biases towards task-related behavior.
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2. Environment

Figure 1 shows the virtual phone booth used as the environment
for listening to the audio stimuli. Participants were only instructed
to understand the contents of the speech samples and could look
around freely if they desired. The green glowing sphere in a glass
bulb on top of the phone was pulsing slightly as the amplitude of the
currently played audio in- or decreased. Opposing this default fixa-
tion point, we added distraction posters left and right to the phone,
allowing the detection of voluntary exploration. The VR experience
lasted on average 4.15 minutes (SD = 0.67).

3. Experiment

14 males and 1 female university students with a mean age of 22.87
years (SD = 0.92) participated in an experiment. Following the dec-
laration of Helsinki, they gave informed consent after an explana-
tion of the experiment. They were all Japanese native speakers,
and with English being a regular part of Japanese education, all
participants were expected to be learners of English. Four natural
samples of speech were chosen to increase difficulty step by step:
JP-Familiar was familiar speech by a close Japanese person, JP-
Unfamiliar was a literary and more dense sample from a Japanese
science fiction movie, EN-Familiar was an intentionally easy sam-
ple for learners of English, and EN-Unfamiliar was a high-level
lecture in English. Each sample lasted about 40 seconds. After the
VR experience, participants answered the 5-point Likert item “How
well do you feel that you understood speaker number x?” for each
speech sample on a 5-point Likert scale. As our main dependent
variable, we recorded eye data using the inbuilt eye tracker of the
HTC VIVE Pro Eye headset. This included head transforms, gaze
collision points on scene surfaces, the closest point between the left
and right gaze rays, and names of the gazed-at virtual objects.

4. Results

After performing blink detection using the R package GazeR and
linearly interpolating eye data during blinks, pupil size values were
normalized using the data between 500 ms and 2000 ms of each au-
dio sample trial as a baseline. Due to strong noise, the focus offset
feature was smoothed using a Savitzky-Golay filter (window size
201, order 0). In the absence of an easy-to-use toolkit for 3D gaze
analysis, the 3D eye gaze data was mapped onto a virtual screen
in participants’ head space and fixations were detected using the R
package gazepath.

Participants rated their perceived comprehension to be 4.91
(8D = 0.30) for JP-Familiar, 3.09 (SD = 1.51) for JP-Unfamiliar,
3.55 (SD = 0.93) for EN-Familiar, and 1.64 (SD = 0.67) for EN-
Unfamiliar. This means that JP-Familiar could be followed by
all participants, while most of them had problems following EN-
Unfamiliar. The randomization of audio samples was afterwards
found to be biased so that easier samples are presented first. The
data of each of the 40-second long listening phases was summa-
rized in chunks of 10 s each by taking mean, SD, and event count.

The most significant differences occurred in pupil size means,
which were largest for EN-Familiar compared to JP-Familiar
(p < .05, d=0.38, 0.072 mm larger), JP-Unfamiliar (p < .01,

d =0.66, 0.095 mm larger) and EN-Unfamiliar (p < .05, d = 0.6,
0.103 mm larger), with d representing Cohen’s effect size of each
test. This indicates that the highest mental load was induced during
EN-Familiar—we think that many participants might have given
up on following EN-Unfamiliar. Focus offset did not follow the
same pattern. Participants focused more behind surfaces during
EN-Familiar (p < .01, d = 0.88, 7.0% higher) and EN-Unfamiliar
(p <.05,d=0.72, 6.5% higher) compared to JP-Unfamiliar. In
addition to known stability issues of eye vergence, focus offset
might have suffered from the aforementioned randomization issue.
Fixation frequency dropped during EN-Familiar compared to JP-
Unfamiliar (p < .05, d = 0.53). Blinks and saccades did not signif-
icantly differ between audio samples—this might have been due to
the comparatively low sample rate. Finally, participants who looked
at the distraction posters near the phone had a tendency of doing so
during the easier audio samples.

5. Discussion and future work

We used general techniques for detection of mental load from eye
data in VR, and think their application to VR should be further
explored. Whenever feasible, experimenters can take advantage of
colliders outside the main area of interest to identify gaze behav-
ior in VR indicating distraction. As the focus offset metric did not
follow the pattern of pupil size, it might not be a direct indicator
of mental load. However, with increasingly accurate eye tracking
hardware, it might feature useful connections, e.g., to attention and
alertness. These two states (just as an example) have in common
that they can be controlled more intentionally by users compared
to mental load. In the current study, we learned how many prereq-
uisites there are for true mental load to occur—often depending on
the specific individual tested. We recommend that future studies
focusing on mental load and its quantitative evaluation should first
verify responses to the specific stimuli in use separately.
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