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Figure 1: A surgeon performing a highly-realistic tear operation on a pumping (animated/deformed while tearing) heart in VR. The operation
is performed in real-time 10ms, while the 3D heart mesh is simulated and interacted as a soft-body. Further deformation on the soft tissues
can be applied, being layered on top of a linear-blend skinned skeleton mesh.

Abstract
We present an algorithm that allows a user within a virtual environment to perform real-time unconstrained cuts or consecutive
tears, i.e., progressive, continuous fractures on a deformable rigged and soft-body mesh model in high-performance 10ms. In
order to recreate realistic results for different physically-principled materials such as sponges, hard or soft tissues, we incor-
porate a novel soft-body deformation, via a particle system layered on-top of a linear-blend skinning model. Our framework
allows the simulation of realistic, surgical-grade cuts and continuous tears, especially valuable in the context of medical VR
training. In order to achieve high performance in VR, our algorithms are based on Euclidean geometric predicates on the
rigged mesh, without requiring any specific model pre-processing. The contribution of this work lies on the fact that current
frameworks supporting similar kinds of model tearing, either do not operate in high-performance real-time or only apply to
predefined tears. The framework presented allows the user to freely cut or tear a 3D mesh model in a consecutive way, under
10ms, while preserving its soft-body behaviour and/or allowing further animation.

CCS Concepts
• Computing methodologies → Mesh geometry models; Virtual reality; • Mathematics of computing → Mesh generation;

1. Introduction

Since their inception, rigged animated models [MtLTM88] have
become a major research topic in real-time computer graphics.
Experts have been experimenting with various animation and de-
formation techniques, pushing the boundaries of realism and real-
time performance. As the industry of Virtual, Augmented Reality
(VR, AR) rapidly grows, the term of full user-immersion is be-

ing researched extensively. Fully-immersive virtual reality systems
mainly aim to enable users to experience and perceive the virtual
environments as real [PP20]. To maintain user immersion at all
times, these VR systems must produce and project a high number
of frames per second, which implies that the computational latency
for each frame should be minimal. In this regard, increasingly more
complex and optimized algorithms are being developed. Sophisti-
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cated computer graphics tools involve the ability to perform cuts,
tears and drills on the surface of a skinned model [BSM∗02,KP21].
Such algorithms are aiming to increase user immersion and to be
used as sub-modules of even more complex operations. However,
their scale-up for the extreme real-time conditions of virtual re-
ality environments utilizing mobile, all-in-one un-tethered head-
mounted displays (HMDs), remains an active field of research.

The need to interact in a shared virtual environment with other
participants in the upcoming metaverse pushes the envelope for
more realistic deformation simulations that lead to more complex
techniques and interaction paradigms. In the physical world, certain
deformable objects, e.g., soft or hard tissues, are deformed natu-
rally when external forces are applied on them. To preserve immer-
sion and avoid the uncanny valley in VR, the rigid object’s physi-
cal behavior needs to be replicated in VR too [TPBF87,MMCK14,
PLK∗18]. One way to accomplish this is via the so-called soft-body
mesh deformation [PZL∗20], a suite of algorithms that essentially
dictates how the vertices of a mesh should affect one another when
an external force is applied anywhere on the surface of the model.

Performing interactive cuts on a model is not something new;
However, most techniques are not suitable for applications requir-
ing high frame-rates as they are based on finite-element methods.
Moreover, implemented cuts in such applications are in most cases
constrained: camera, model or user degrees of freedom, i.e. the user
cannot freely cut anywhere on the model; a set of predefined cuts
and their animations are usually produced and placed in the vir-
tual environment by VR designers or artists, and each one is played
when triggered by the user’s specific and constrained actions.

In this work, we propose a framework that allows the user to
perform realistic tears, i.e., small cuts, on the surface of a model.
Our algorithms are based on pure geometric operations on the sur-
face mesh, and therefore are amenable to yield real-time results in
VR, even in low-spec devices such as mobile VR head-mounted
displays (HMDs). The significance of our work lies on the fact that
in the current state-of-the-art, similar tears on a rigged 3D model
in VR are predefined via linear-blend skinning animations, in order
to allow them to playback in real-time. Our methods can be imple-
mented in modern game engines such as Unity3D and Unreal En-
gine; convincing results are illustrated in the video accompanying
this work (also, see Fig. 1). The specific calculations must be per-
formed in real-time within a 10-20 ms to preserve user immersion.
The ongoing research for increased realism in virtual environments
heavily impacts educational and training applications, especially
the ones regarding VR medical training (and beyond) [PKS∗22].

2. Previous Related Work

[PO09] proposes a simplified version of previous FEM techniques
for use in video-games and real-time simulations. They utilize
a linearized semi-implicit solver and a well-mastered and opti-
mized parallelized implementation on CPU of the conjugate gra-
dient method. The adopted approach avoids re-meshing, by con-
straining the fracture on the faces of the simulation elements. It
requires the duplication of vertices, while further introduces “splin-
ters” that hide the produced artifacts. The embedded fracture model
relies on maximum tensile stress criterion, element splitting accord-
ing to a fracture plane, and local re-meshing to ensure a conforming

Figure 2: A close up of a deformable heart being torn by a scalpel.
The heart is simulated as a soft body using the proposed particle
system.

mesh. This approach leads to a fast and robust fracture simulation
for stiff and soft materials.

[MCS15] proposed a cutting algorithm, based on [SDF07],
that allows arbitrary cracks and incisions of tetrahedral deformable
meshes. In their work, the utilization of low resolution meshes as-
sists the efficient simulation of the model, while preserving the
surface detail by embedding a high-resolution material boundary
mesh, for rendering and collision handling. The method allows
the accurate cutting of high-resolution embedded meshes, arbitrary
cutting of existing cuts, and progressive cuttings during object de-
formation. The utilized algorithm is based on the virtual node al-
gorithm, that duplicates elements intersecting with the cutting ge-
ometry, rather than splitting them. The extended algorithm allows
arbitrarily generalized cutting surfaces at smaller scales than tetra-
hedron resolution, and improves the shortcoming of the original
algorithm, that restricted one cut per face and did not handle degen-
erate cases. The algorithm is based on embedding cracks in virtual
elements, which limits the accuracy of the crack propagation com-
putations. In this work several offline progressive cutting use cases
were simulated using the proposed algorithm.

Aiming to model physical object cutting behavior, [HQZ∗22]
proposes an algorithm for highly realistic virtual cutting simula-
tion, showing the contact effect before the cutting occurs, that con-
siders deformable objects’ fracture resistance. It utilizes a versatile
energy-based cutting fracture evolution model, based on Griffith’s
energy. It introduces a tailored cut-incision evolution scheme that
constraints the cutting tool’s interaction with the deformable ob-
ject, by evaluating the stage at which the cutting starts. To allow
the surface indentation prior to cutting, the adapted model uses
a material-aware scheme to generate the appropriate realistic and
consistent behavior of the cutting tool, and the visual indentation
deformation of the object. The designed framework is based on the
co-rotational linear FEM model to support large deformations of
soft objects and also adopt the composite finite element method
(CFEM) to balance between simulation accuracy and efficiency.
Additionally, it handles the collision and cut incorporation in the
same way as the current FEM-based cutting methods using hexahe-
dral elements. The experimental results show that realistic cutting
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Figure 3: The segmentation of a bunny model into mesh-sections
defined by axis-aligned bounding boxes. In this case, all boxes con-
tain the same number of vertices. Mesh-section overlapping is re-
quired to handle tearings that involve faces contained in multiple
sections.

simulations of various deformable objects with various materials
and geometrical characteristics that introduce small computational
cost for desktop systems.

[LLKC21] proposes real-time tearing and cutting operations on
deformable surfaces using local Cholesky factorization updates in
the global pass of a projective dynamics solver. These updates as-
sist the handling of the simulations with topology changes. This
adopted approach involves addition of new vertices, topological
changes, and re-meshing operations, and allows effective gradual
and progressive updates, which is common in real-time physics
based simulations.

3. Our Approach

Our methodology is based on the techniques of [KP21], where the
authors describe simple cut and tear operations on a 3D mesh us-
ing basic geometric operations. Our optimized tearing module (see
Section 3.1) allows for progressive uninterrupted tears i.e., the user
can freely perform tears successively similar to a surgeon’s tear-
ing gesture. Furthermore, our cutting module (see Section 3.2) per-
forms straight cuts, producing two (or more) fully deformable sub-
meshes. Both modules operate on deformable meshes, using geo-
metric algebra operations. To accomplish the so-called soft-body
mesh deformation, we have developed a suitable particle decom-
position on the model’s vertices based on [NMK∗06], where the
model’s vertices are clustered into groups, and physics particles
are assigned on each group to handle forces and collisions (see
Section 3.3). Upon mesh import, the particles are generated as
described in Section 3.3.1, thus enabling soft-body behaviour in
the original model. The pipeline used to properly simulate this be-
haviour in a modern game engine is provided in Section 3.3.2. Af-
ter performing a tear (see Section 3.1) or cut operation (see Sec-
tion 3.2) on the model, apart from the partial re-meshing that the
model undergoes, a subsequent update of the nearby particles, in-
volving affected vertices, is also required (see Section 3.3.3). This
crucial step increases the realism of the torn model, as it allows
proper visual simulation, such as deforming or animating, of the
torn area. Finally, in Section 3.3.4, we propose an optional step to-
wards optimizing the visual outputs of a torn soft-body model.

Via the proposed algorithms, we are able to perform real-time
continuous tears on a soft-body model and update the underly-
ing particle decomposition to obtain highly realistic results in VR.
Our methods were designed with the lowest possible computational
complexity to yield real-time results and high frame-rates in VR.
Lastly, proper handling and weight assignment [KP21] to the tear-
generated vertices allow us to tear not only rigid but also skinned
models, where in the latter case, further animation is still feasible.

3.1. The Tear Algorithm

In order to achieve real-time tearing results, we have opted for basic
geometric primitives, e.g., face-plane intersections and face ray-
casting, as basic building blocks for our algorithms. This approach
allows for fast identification of the faces affected by the tear.

In our implementation, the tear width is user defined. In non-
zero settings, a destructive tear takes place: faces that fall in the
tear-gap are completely or partially clipped, i.e., removed from the
model. Partially clipped faces are calculated by their intersections
with the tear-gap surrounding box which is defined by “connecting”
consecutive bounding-boxes of single tear segments.

In case of a single tear segment, such a bounding box is aligned
and bounded by the scalpel’s endpoints in its final position and the
scalpel’s intersection with the model in its initial position; the width
of the box is equal to the user defined tear width (see Fig. 5). As the
user moves the scalpel, freely tearing the model, several scalpel’s
positions are sampled at specific time or distance intervals, defining
multiple consecutive tears segments. In case of abrupt movements
in the scalpel’s trajectory, the algorithm forces extra sampling on
the scalpel’s position. To avoid jagged edges on the tearing path,
the algorithm makes sure that consecutive bounding boxes do not
overlap, by utilizing non rectangular bounding boxes instead (see
Fig. 5).

To further optimize the performance of the tear algorithm, the
mesh is segmented into smaller groups, called mesh sections. Each
mesh section is defined as an axis aligned bounding box and con-
tains groups of the mesh faces. This division of the mesh into
smaller sections reduces significantly the Tear algorithm running
time, as the affected mesh section is only a small subset of the en-
tire mesh (see Fig. 3). The number and size of these sections are
user defined.

Some comments on the steps of the tear algorithm are found be-
low.

• In Line 5, the affected mesh sections are identified and searched
for faces to be added to the search list S. This reduces running
times, especially in complex models with a large number of ver-
tices.

• In Line 9, a more sophisticated check that ensures a tested face
T will remain unaffected in the torn model, and therefore, it can
be removed from S for the next iteration, which further reduces
the loop iterations in Line 6.

• The operation in Line 18, ensures that a properly triangulated
mesh will be produced, i.e., a vertex on an edge will be connected
to the opposite vertex in both adjacent faces (see Fig. 4).

• In Line 12, if the model is a soft-body (see Section 3.3), the
particles map is also updated (see Section 3.3.3).
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Algorithm 1 Tearing Algorithm
Input: Triangulated Mesh M, scalpel’s position at specific time

steps, Mesh Sections.
Require: Scalpel properly intersects M at these time steps and that

a tearing plane between timesteps is properly defined.
Output: The mesh resulting from M getting torn by the scalpel.

1: for each Two consecutive timesteps do:
2: Define a bounding box for the scalpel’s tear segment.
3: Smoothen out the intersection of two bounding boxes by re-

placing a plane of the leading box by a the “touching” of the
next one.

4: Determine the vertices of the mesh section(s) that fall into
the bounding boxes, by performing multiple side tests of the
planes defining the bounding boxes.

5: Define a search list S containing all faces containing such
vertices.

6: for each face T in S do
7: for each plane Π of the first bounding box B do
8: if T intersects Π then
9: if The intersection points fall inside the band of the

neighbouring planes of Π then
10: Retriangulate the face into two smaller ones.
11: Keep only the smaller face(s) that lie outside B,

thus clipping the mesh inside B.
12: Determine the normals/uvs of the intersection

points via interpolation. In case of a rigged model, also de-
termine the intersection point weight values from the nearby
vertices.

13: end if
14: end if
15: end for each
16: end for each
17: for each Smaller face kept from previous loop do
18: Do a second retriangulation pass, i.e., search its neighbor-

ing face and split it into two parts, if not split already.
19: end for each
20: end for each
21: Update the mesh model and finalize the tear, by sending the

cached final vertices and faces to the GPU buffer to properly
update the mesh model.

Figure 4: An additional triangulation pass ensures an intersection
point on an edge is properly connected to both vertices on the adja-
cent faces. Left figure depicts the result before this “second pass”;
right figure shows, in red, the edges added in this step.

Figure 5: Bounding boxes defined during a tear. The scalpel’s po-
sition is sampled based on a time or distance threshold, and a se-
quence of over overlapping bounding boxes is created. A larger
threshold is used in the bunny model, whereas a smaller one on
the cactus; the length of the boxes changes proportionally to this
threshold.

3.2. The Cut Algorithm

The algorithm to perform a thorough straight cut on the mesh model
is a simplified version of the respective single tear algorithm. In-
deed, we define the cutting plane Π as the plane that goes through
the following three points: the initial intersection point of the model
mesh with the scalpel at a time step, and the scalpel’s endpoints af-
ter a specific time step; notice that these three points should not be
co-linear, otherwise the selected time step is altered.

As in tear algorithm, if the model is a soft-body (see Section 3.3),
the particles map is also updated (see Section 3.3.3) during Line 4.
After applying the cutting algorithm, each sub-model will lie on the
same side of the cutting plane (see Fig. 6).

3.3. The Particle System

3.3.1. Generating the Initial Particles

The offline process followed to generate the initial particles is sum-
marized in Algorithm 3.

Some remarks on the particle generation algorithm can be found
below

• The Poisson Disk Sampling [BWWM10] in Line 1 ensures that
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Algorithm 2 Cutting Algorithm
Input: Triangulated Mesh M, cutting plane Π.
Output: Two sub-meshes resulting from M getting cut by the

plane.
1: for each Face T in M do
2: if T intersects Π then
3: Evaluate intersection points and add them to the M.
4: Determine the normals/uvs of the intersection point via

interpolation. In case of a rigged model, also determine the in-
tersection point weight values from the nearby vertices.

5: Retriangulate T into three smaller ones, containing the in-
tersection points.

6: Replace T in the model with the smaller sub-faces.
7: end if
8: end for each
9: for each Face T in M do

10: if Any vertex of T lies on the positive side of Π then
11: Put T and its vertices on the positive sub-mesh.
12: else if Any vertex of T lies on the positive side of Π then
13: Put T and its vertices on the negative sub-mesh.
14: end if
15: end for each

Figure 6: A bone is cut. The cutting plane, defined by the scalpel, is
denoted in red. The original bone model is dissected in two parts,
each containing vertices lying on the same side of the plane.

the selected points will be uniformly distributed on the mesh,
maintaining sufficient distance between them.

• In terms of modern game engines (e.g., Unity3D), we would de-
scribe the particles spawned in Line 2 as a GameObject with a
spherical collider and a rigidbody to handle physics forces.

• To properly simulate soft-bodies, we apply a typical spring mass
approach [NMK∗06], with some modifications (e.g. the inside
pressure is not used to calculate the movement of each particle).
In Line 3, each particle gets connected to its anchor point’s po-
sition vertex, via a spring, thus ensuring that the particles will
always tend to return to their initial anchor position upon dis-
placement. (see Fig. 7)

• In Line 7, the vertices assigned to the particle P are the ones that
will be affected by P’s potential displacement, with a weight in-
versely proportional to their distance from the P’s spawn posi-
tion, usually based on a sigmoid function.

• In Line 12 we may determine each particle’s adjacent particle

Algorithm 3 Particle Generation Algorithm
Input: Triangulated Mesh M, user defined particle radius d and

particle-to-particle distance δ.
Output: Particle map for M.

1: Perform a Poisson Disk Sampling, on the vertices of M.
2: Spawn spherical particles centered at the selected vertices,

which are denoted as anchor points.
3: The particle and its anchor are connected via a spring.
4: for each Particle P do
5: for each Vertex V of the mesh do
6: if V lies inside the sphere, centered at P’s anchor point,

with radius d. then
7: Assign the vertex V to the particle P and determine the

weight influence of P on V .
8: end if
9: end for each

10: for each Other particle Q do
11: if Q’s anchor point lies inside the sphere, centered at P’s

anchor point, with radius δ. then
12: Denote Q and P as neighbouring particles and deter-

mine their in-between influence
13: end if
14: end for each
15: end for each

neighbours. This grid of particles (see Fig. 8) will eventually act
as a set of control points that will enable soft-body deformations;
upon moving a particle, all neighbouring particles will also be
partially displaced, and the affected vertices will yield the de-
sired effect. A particle’s displacement due to the movement of
an adjacent particle is inversely proportional to the distance of
their anchor points.

The connections between particles and vertices affected or
neighbouring particles, along with the respective influence weights,
are referred to as the particle map.

3.3.2. Particle Simulation

The particle simulation is performed almost natively by modern
game engines, such as Unity3D, as it involves the same mechanics
with joint animation, i.e., both frameworks (particle simulation &
joint animation) include control points, and vertices with weights
assigned to them.

Particularly, for static meshes, only the particles’ anchor posi-
tions need to be updated. In each simulation update, Unity3D au-
tomatically calculates forces and collisions, and applies the po-
sition changes for each particle, and the corresponding weighted
displacement on the assigned vertices. On the other hand, skinned
meshes involve additional steps in each simulation update. Initially,
the particle’s anchor position is calculated based on the pose of the
model at the specific time step. As the anchor points are essentially
vertices of the mesh, the animation equation is applied to obtain
these positions. Subsequently the particle’s adjacency is updated,
by re-applying Line 4 of Section 3.3.1; as the position of anchor
points might have been altered, the particles’ adjacent neighbours
may have changed, based on the δ distance threshold. Finally, the
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Figure 7: As a particle (orange circle) is displaced from its initial
position (Top), it gains a velocity that tends to return it there (red
arrow), simulating elasticity on all affected vertices (Bottom). Blue
arrows represent the resulting tendency of the vertices to return to
their initial position.

Figure 8: The particle system layer on top of a heart model. The
spheres illustrate the particles and their interconnections (in blue
lines).

same mechanics with a static mesh are applied, i.e., determine the
position of the particle and consequently of the affected vertices.
Specifically, the final global position fi of the i-th vertex of the
model is determined, by evaluating fi = ∑ j∈J(i) wi, jD jvi , where

• fi and vi are the final and initial homogeneous coordinates of the
i-th vertex,

• J(i) contains the indices of the particles that affect the i-th vertex,
• wi, j is the corresponding influence factor between the j-th parti-

cle and the i-th vertex, and
• D j is the 4x4 matrix corresponding to the displacement of the

j-th particle from its anchor, in global coordinates.

We obtain the final displacement D j, either directly, i.e., the user
moved a specific set of particles, or indirectly, via model-user inter-

action in VR, e.g., the user squeezed the model. In the latter case,
the game engine’s physics component is responsible to evaluate the
displacement D j of the particles, by calculating the forces and col-
lisions involved, at runtime. Under the physics engine hood, the
forces applied to particles displace them from their anchor points.
As a consequence, their velocity is altered to be proportional to the
respective displacement, always pointing to the initial position, thus
simulating elasticity.

In the former case, where the user chooses to displace a specific
set of particles, we may evaluate the displacement of all particles,
by taking into consideration that the particles are interconnected via
a spring-like system. Thus, we may determine the displacement D j
of a particle indirectly, moved by its neighbouring particles move-

ments via D j = ∑k∈K( j)W j,kD′
k , where

• K( j) contains the indices of the particles that are connected to
the j-th vertex,

• D j is the final displacement of the j-the particle, which was not
displaced directly, but indirectly, due to the adjacency with the
k-th vertex,

• D′
k is the 4x4 matrix corresponding to the displacement of the

k-th particle that is displaced by the user directly,
• W j,k is the corresponding influence factor between the j-th

and the k-th particle, a value inversely proportional to their in-
between distance.

3.3.3. Updating the Particles After a Tear or a Cut

After a tear or a cut operation, it is important to update the parti-
cle map, in order to preserve the realism of the soft-bodies. This
map is updated by adding or removing vertices, as well as modi-
fying the particle connections with the assigned vertices or other
neighbouring particles. To produce physically correct deformation
results, simple directives are introduced, e.g., vertices belonging to
opposite sides of a tear, although close enough, cannot belong to
the same particle (see Fig. 9).

Below we provide an overview of the algorithm used to perform
the particle update during a tear operation.

Algorithm 4 Particle Update Algorithm
1: Assign intersection points introduced by the tear operation to

particles, as in Line 7 of the Particle Generation Algorithm.
2: If any tear bounding box intersects the segment connecting two

neighbour particles, these particles are no longer considered
neighbours.

3: for each Particle P do
4: Remove any vertex V affected by P from its influence list if

V and the anchor point of P lie on different sides of any tear
plane.

5: end for each

Regarding Line 4, this simple-to-describe objective is one of the
most important and challenging primitives, in order to avoid poten-
tial artifacts. Special focus was given to intersection vertices that
were introduced close to the connection of two consecutive tears
segments, i.e., in the intersection of two bounding boxes. To prop-
erly identify whether a vertex lies on the opposite side of the an-
chor point with respect to a tear plane, i.e., the plane splitting the
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Figure 9: A spherical particle’s (gray) anchor point (i.e., center)
is connected with segments to all initially affected vertices, before
the tear operation. A red segment indicates that the corresponding
vertex is no longer affected after the tear, as a tear bounding box
intersects with it. A blue segment, indicates that the vertex is still
affected after the tear.

bounding box in half, containing the scalpel’s endpoints, we had
to consider both the current and the previous tear segment. Ad-
ditionally, to provide correct results in lower running times, for a
given particle P, we only considered checking against tear planes
that corresponded to sufficiently close bounding boxes. To be more
specific, if the vertex, lying on a bounding box (i.e., an intersection
point introduced during the tear operation), closest to the anchor
point of P, is not affected by P, then the corresponding check of the
particle against the corresponding tear plane may be omitted.

A similar but simpler methodology is followed after a cut oper-
ation on the mesh. In that case, the particle clustering map is up-
dated by removing all vertex-particle or particle-particle connec-
tions where the corresponding connection segment intersects the
cutting plane.

3.3.4. Adding More Particles for Optimized Tear Animation

The method proposed for a progressive tear operation on a mesh
model with a subsequent update of the existing particles, yields
highly realistic results. However, the described particle system still
misses to model the absolute physical behavior of human tissue. To
model such realistic behavior, the reaction of human tissue after a
tear operation would be to animate and slightly open up the wound.
To achieve this type of animation, we consider an auxiliary set of
newly created particles around the tear slit (see Fig. 10). These new
particles will be assigned to all vertices that took part in the two tri-
angulation passes. A slight displacement of the new particles’ an-
chors in a direction normal but away from the tear segments makes
the animation possible.

However, the insertion of additional particles leads not only to
increased realism, but also increased running times.

4. Results and Discussion

We experimented our method using various mesh models; some
representative use cases are shown in Figs. 1, 11 and 2. In all cases,

Figure 10: Location of particles (yellow spheres) additionally
spawned during a progressive tear towards improving visual re-
sults. A movement of these particles away from the tear achieves
higher realism and a smoother animation of the tear opening up.

Table 1: Running times required to tear a sphere, a bunny and a
heart model.

Characteristics Sphere Bunny Heart
Number of vertices 515 2527 9747

Number of faces 768 4968 18336
Number of particles 191 179 224

Operation Running times per tear segment
Perform Tear 0.36 ms 3 ms 2.54 ms

Update particles 0.39 ms 2.01 ms 0.87 ms
Disconnect Particles 0.91 ms 1.25 ms 2.63 ms

Calculate BoneWeights 0.90 ms 3.81 ms 11.04 ms
Update Mesh 0.07 ms 0.24 ms 0.76 ms

Total Time 3.25 ms 11.19 ms 18.65 ms

further cut/tear operations, soft-body deformations and/or model
animations are possible. Tables 1 and 3 contain the time required
to perform the algorithms for tear and cut respectively. Every pre-
sented running time is the average time of 10 or more runs, obtained
using a Windows 11 PC equipped with AMD Ryzen 7 5800H at
3.2GHZ, 16GB RAM and an Nvidia RTX 3060 (6GB RAM) graph-
ics card. The proposed method was implemented exclusively us-
ing non-parallel CPU computations. Our methods are also partially
implemented in a VR medical training application [ZKK∗21], run-
ning on a modern game engine performing identical results and
producing real-time frame-rates, suitable for desktop but also for
VR immersive systems. In our experiments, an HTC Vive Pro teth-
ered HMD was used to properly validate that a satisfying immersive
quality of experience (QoE) on the user’s end was achievable using
our framework; this is illustrated in the video accompanying this
work.

Experiments of [HQZ∗22] showed partial cutting simulations of
various deformable objects, called fractures, which correspond to
our tear operations. The method produces highly realistic virtual
cutting simulations considering the deformable object’s fracture re-
sistance. The scalpel cutting seems to be a little inaccurate with re-
spect to the visualized cut. In terms of computational results, the
method introduces a relatively low overhead on desktop stations
while no experimentation is mentioned on demanding frame-rate
systems such as VR or embedded within game engine pipelines.
The experiments show (see Table 2) that for medium sized models
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Figure 11: (Left) The vertices of a 3D model are clustered in particles, to allow soft-body characteristics. (Middle) A continuous tear is
performed on the model. (Right) The particles of the torn model are updated, allowing further proper soft-body deformations.

Table 2: Comparison of ours tear method with the one presented in
[HQZ∗22]. Models of similar complexity were used. OUR denotes
that the proposed framework was applied.

Model Faces Running Time
Horse 4266 10.14 ms

Bunny (OUR) 4968 11.19 ms
Cuboid 18128 52.77 ms

Heart (OUR) 18336 18.65 ms

Table 3: Running times required to cut a bone, a bunny and a small
cactus model.

Characteristics Bone Bunny Small Cactus
Number of vertices 516 2527 2976

Number of faces 983 4968 3000
Cut Operation

Intersection Points 64 356 186
Running times 12 ms 17.29 ms 13.49 ms

the method’s results are close to our results, while in larger models
our method is much faster.

The work of [MCS15] provide cutting results for various models
with no information on their mesh resolution. The experimentation
of the method was run on two different desktop platforms. The run-
ning times of the method are bound by the utilization of a Newton-
Raphson iterative solution scheme. In that regard, the method was
not experimented in VR or game engine environments.

The [LLKC21] provide real-time tearing and cutting operations
on deformable surfaces. This method is mainly experimented on
cloth models which differ significantly from surgical-like tear op-
erations. The simulation involves a local/global solve of projective
dynamics with the pre-computed factorization, and the factor mod-
ification process. The produced results are indeed satisfying for
desktop systems, but not for VR, as the time for a cloth cut is 49ms
in total.

5. Conclusions & Future Work

We have presented an algorithm that allows a user to perform un-
constrained consecutive tears on a rigged model in VR, while pre-
serving its ability to be deformed as a soft-body. Since our method
is geometry-based, it does not require significant GPU/CPU re-
sources, it is amenable to work in real-time VR even for low-spec
devices, making it suitable for mobile VR (currently, testing is in
progress). We expect that it will eventually pave the way to alter
the modern landscape of such VR interactions, where similar op-
erations are mostly predefined. Also, most state-of-the-art methods
including physically-correct methods (e.g. Finite Element Meth-
ods) cannot be used as they require significant computing resources
and/or produce low fps results, unsuitable for mobile VR appli-
cations. The proposed framework is already implemented in the
MAGES SDK, running on Unity3D, publicly available for free.

In the future, we intend to further optimize our framework to
work in a fraction of the current running times by utilizing GPU
compute and geometry shaders, taking advantage of the parallel
pipeline they offer. So far, the performance overhead by our frame-
work during a VR session, involving high-complexity models, is
minimal and in most cases negligible, due to the user’s mental
preparation time between actions. As tear operations are especially
useful for VR medical training scenarios, we would like to ex-
plore our algorithm’s adaptation to the collaborative needs of multi-
user scenarios of such applications. Furthermore, to provide the
best possible user experience without getting in the uncanny val-
ley [ZPL∗20], we plan to develop an offline FEM model reflect-
ing the ground truth of natural deformation behavior of the human
body, that will assist the evaluation process of our method’s re-
alism. Lastly, we would like to investigate the utilization of deep
learning for the optimal identification of best suited clusterings,
based on the model, and the action(s) the user intents to perform.
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