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Abstract

Conventional motion capture (MOCAP) systems, e.g., optical systems, typically perform well for one person, but less so
for multiple people in close proximity. Measurement quality can decline with distance, and even drop out as source/sensor
components are occluded by nearby people. Furthermore, conventional optical MOCAP systems estimate body posture using a
global estimation approach employing cameras that are fixed in the environment, typically at a distance such that one person or
object can easily occlude another, and the relative error between tracked objects in the scene can increase as they move farther
from the cameras and/or closer to each other. Body-relative tracking approaches use body-worn sensors and/or sources to track
limbs with respect to the head or torso, for example, taking advantage of the proximity of limbs to the body. We present a novel
approach to MOCAP that combines and extends conventional global and body-relative approaches by distributing both sensing
and active signaling over each person’s body to facilitate body-relative (intra-user) MOCAP for one person and body-body
(inter-user) MOCAP for multiple people, in an approach we call cooperative motion capture (COMOCAP). We support the
validity of the approach with simulation results from a system comprised of acoustic transceivers (receiver-transmitter units)
that provide inter-transceiver range measurements. Optical, magnetic, and other types of transceivers could also be used.
Our simulations demonstrate the advantages of this approach to effectively improve accuracy and robustness to occlusions in

situations of close proximity between multiple persons.

CCS Concepts

o Human-centered computing — Mixed / augmented reality; Virtual reality; Graphics input devices; @ Computing method-
ologies — Motion capture; Graphics input devices; Mixed / augmented reality; Virtual reality; Motion capture;

1. Introduction

There are many techniques and systems designed for human mo-
tion capture (MOCAP), which are widely used for animating film
and video game characters, assessing human movement in health-
care situations, sports analysis, and a wide range of training activ-
ities [MHKO06, WF02]. Systems exist that employ inertial sensors,
e.g., [DOKA13, Not], but the most popular are optical or magnetic
systems that employ environment-mounted cameras or magnetic
sources that “look” or transmit inward toward human subjects who
are wearing passive optical reflectors [ART17,0pt17a, VIC], active
light sources [Opt17b, Phal7], or magnetic sensors [Pol17]. How-
ever, existing systems have difficulty with multiple people being
captured in the same space. When people are tracked with respect
to components that are fixed in the environment, the relative error
between tracked people will increase as they move farther from the
environment-mounted sources/sensors and/or closer to each other.
Furthermore, as people or objects move closer to each other they
can completely block signals to/from the environment-mounted
components. Unfortunately these occlusion and distance-related er-
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rors tend to increase under exactly the circumstances when the rel-
ative accuracy matters the most—when captured people are inter-
acting close together.

In this paper, we introduce the notion of cooperative motion cap-
ture (COMOCAP) for circumstances where proximal interactions
between multiple users are expected. As illustrated in Figure 1, the
basic idea is to replace or supplement conventional environment-
mounted and body-worn components with environment-mounted
and body-worn transceivers (transmitter-receiver units) used to
cooperatively measure inter-transceiver geometric relationships,
and to use those measurements to continuously jointly estimate
the evolving body postures with respect to the fixed environment
(global), within users (intra-user), and between users (inter-user).

The cooperative nature of the approach requires transceivers that
can signal each other in both directions. This can be achieved
for example with optical, magnetic, or acoustic sources and sen-
sors. Compared to global posture measurements obtained from
fixed sensors, e.g., room/tripod-mounted cameras, cooperative
intra-body or inter-body measurements between body-mounted
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Figure 1: (a) A depiction of body-relative signaling in a multi-person
setup. Each person wears components that can send/receive intra-user sig-
nals (blue dashed) between a reference body point, typically the head or
torso, and the moving limbs. Each person’s body is then tracked with re-
spect to the environment via a centralized global system (green dashed).
(b) A depiction of our proposed COMOCAP approach where transceivers
(transmitter-receiver units) worn on each person send/receive signals (red
dashed) to/from the transceivers of other people in a peer-to-peer fashion.

transceivers can increase robustness in the face of occlusions
or other measurement failures that would occur with passive or
independently-functioning active markers in such circumstances.
The cooperative measurements can also stabilize or reduce the rel-
ative error between body parts, especially in proximal conditions.

We evaluated this theoretical model with respect to a simulation
of an acoustic system employing conventional and COMOCAP ap-
proaches. Our simulation results support the validity of the CO-
MOCAP approach, indicating increased accuracy when people are
close to each other. Our results also support the notion that the CO-
MOCAP approach can improve the robustness to sensor occlusion
compared to conventional approaches.

2. Related Work

Motion tracking technologies aimed at sensing the pose of a human
body can be categorized in multiple ways, such as body-mounted or

environment-mounted sensors or sources, marker-based or marker-
less systems, and physical contact-based or contact-less ap-
proaches [MHKO06, WF02]. Moreover, motion tracking approaches
can be classified based on the medium that is used for measure-
ments, such as mechanical [Anil7], inertial [DOKA13, Neul7],
acoustic [VAV*07], magnetic [Pol17], optical [Atr17,Opt17a], and
radio frequency [KPP*13]. In an effort to remedy shortcomings
in some of these mediums, hybrid approaches have been proposed
based on separate position/orientation sensors or multiple overlap-
ping data sources with sensor fusion [HKS* 15, HSGS06, ZP17].
While our general COMOCAP approach is not limited, we limit
the scope of this paper to a single-medium system, and give an
outlook on potential hybrid approaches in our discussion of future
work.

In this paper we distinguish environment-reference from body-
reference approaches. Environment-reference tracking approaches
measure angles or distances from fixed sensors in the environment
to the user’s body and then interpret the signals to estimate the body
pose and movement. The most prominent examples of motion cap-
ture systems that adopt environment-reference measurements are
based on optical sensors (e.g., 4D light-field sensors [JSG15], 2D
CCD or CMOS [DU02,DB03,0sh06], or 1D line cameras [Atrl17]).
Most optical motion capture systems fixed cameras mounted in the
environment to observe retroreflective or active markers placed on
the human body [ART17,0pt17a,0pt17b,Phal7,VIC]. Marker-less
motion capture systems typically use active depth (e.g., Kinect)
or image-based silhouettes of human bodies [Lok02, RKS*05,
Orgl7]. These approaches suffer from occlusion in general and
with multiple users in particular.

Much previous research has been dedicated to determining an
optimal camera placement to provide an unobstructed path between
cameras and users [RK17]. The situation can be modeled as a visi-
bility or Art Gallery problem if the occluders are static [FCOL99],
but these solutions fail for dynamic occluders, e.g., due to one’s
own body movements or the movement of another human’s body
in the tracked space. This is true even for acoustic tracking systems
such as Whisper [Val02], which uses a wide bandwidth signal to
take advantage of a low frequency sound’s ability to diffract around
occluders. Tracking multiple users simultaneously moving close to
each other in a typical Smx5m room introduces intractable infras-
tructure challenges for such environment-reference optical motion
capture systems. For instance, following the VICON Full-Body
Animation configurator [ VIC], motion capture for one user requires
10 cameras (Smx5m), five users 24 cameras (9mx9m), and ten
users 36 cameras (15mx 15m).

Body-reference tracking approaches measure angles or distances
between sensors fixed on the human body. For instance, inertial
units mounted near bones or joints of a human body can be used to
measure relative orientations and/or positions along the kinematic
chain of the body [DOKA13]. Recent consumer body tracking sys-
tems using this approach include Notch, Perception Neuron, and
PrioVR. Acoustic sensors can help correct for drift errors in inertial
measurements [VAV*07]. Since there is no need for external ref-
erences, these approaches offer useful solutions for motion capture
in everyday environments and can be set up outdoors. To reduce
drift, body-reference tracking systems sometimes integrate analyti-
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cal priors based on kinematic constraints, or seek to integrate addi-
tional environment-reference sensing technologies (see Figure 1a).

Related work has been conducted by Johnson et al., who de-
signed a cooperative multi-projector pose estimation framework
capable of calibrating the 3D pose of every projector-camera (Pro-
Cam) unit within an environment via image patterns not only pro-
jected by its own, but also projected by other units [JWF*09].
Our approach is related to 1991 work by Rao and Durrant-
Whyte [RDW91], who describe how to decentralize tasks among
several sensor units and then assimilate each unit’s result so that
every unit arrives at a global common consensus, which enables
systems that are robust and do not need a central processing unit.

3. Method

The basic idea of our COMOCAP approach is to replace or sup-
plement conventional environment-mounted and body-worn com-
ponents with environment-mounted and body-worn transceivers
used to cooperatively measure inter-transceiver geometric rela-
tionships, with every environment/user transceiver would trans-
mitting/receiving to/from all other environment/user transceivers
nearby. One could also combine user-worn transceivers with a con-
ventional environment-mounted MOCAP system.

There are several advantages to using the cooperative approach,
in particular when there are multiple nearby or interacting users:

1. the additional inter-individual cooperative measurements pro-
vide increased pose/posture information over current ap-
proaches, which can increase accuracy and robustness;

2. the inter-individual cooperative measurements can provide in-
formation when global sensors are otherwise occluded—self oc-
cluded or occluded by others; and

3. the direct nature of inter-individual cooperative measurements
can reduce the otherwise typically increasing relative error as
users move closer to each other.

For our COMOCAP implementation we employ an extended
Kalman filter [Kal60, WB95] with a position-velocity (PV) model
as taught in [ABWO1,BH96]. The EKF is attractive because it can
weigh noisy measurements against a model for the expected mo-
tion and fuse them together to arrive at theoretically optimal pose
estimates, and it maintains an estimate of the state error covariance
which provides an ongoing indication of the quality of the actual
and expected pose estimation—particularly valuable for measure-
ment selection from a set of alternatives as we discuss below.

While the notion of global estimates of optical marker posi-
tions in 3D is relatively straight forward, the one-to-many nature of
inter-individual transceiver measurements can make explanations
confusing. In particular, consider that a single acoustic transceiver
can transmit a sound that can be received by multiple other acous-
tic transceivers, resulting in multiple simultaneous range measure-
ments. Furthermore in the case of acoustic transceivers these one-
to-many measurements are relative range measurements between
transceivers that simply constrain each transceiver to be somewhere
on a 3D sphere around itself or the other transceiver.

At every estimate cycle it is useful to identify the set of trans-

ducers associated with one user as the farget transducers Ur, while
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referring to all others as the reference transducers Ug;, where
i=1,2,...,0—1 for v users. We use T to denote the number of
transceivers worn by each user, and € the number of transceivers
in the environment (fixed known locations). For the sake of expla-
nation we assume a constant EKF update rate of 1/3¢ updates per
second (8¢ seconds between updates), and per Kalman filter con-
ventions use the subscripts k to indicate the current time step (i.e.
time 1) and k — 1 to indicate the previous time step (i.e. time 7 — ).

We implement a single EKF per user, with the user’s state rep-
resenting the collective state of all of the transceivers worn by that
user. Specifically, if one considers a 6-dimensional state vector

. . 1T

Xi= [ xiXiyiyinzindi |, (H
for each transceiver, then each user has an associated collective 6T-
dimensional user-specific state vector

T
XU=[X,X,.... X% | . )
Similarly each transceiver has an associated 6 X 6 error covariance

P; (i=1,2,...,7), which collectively form a 6T X 6T error covariance
matrix PV for each user.

At each time step k of the EKF we choose a single rarger user
denoted by the superscript Ur, and define the remaining v — 1 users
as reference users denoted by the superscript Ug;. We combine the
67-dimensional per-user state vectors into an 6Tv-dimensional ag-
gregate state vector

Ug,

T Ur UR\)— T
Xk:[xku xvxe x| T 3)

and we combine the per-user 6T X 6T covariance matrices into an
6TV X 6TV aggregate covariance matrix [P, with the error autoco-
variances for the target user filter and each reference user filter are
on the diagonal. We do maintain the error covariances between the
target user filter and each reference user filter in the first row and
first column. We do not maintain error covariances between the ref-
erence user filters—i.e. we model the reference user filters as being
independent of each other.

3.1. Time Update

In the time update step of the EKF we use a time-invariant aggre-
gate 6TV X 6TV state transition matrix A to project the aggregate
state Equation (3) and aggregate error covariance [P, forward from
the previous time step to the current time step, to obtain a priori

estimates of the same as indicated by the “~” superscripts:
X, = AXy_y, 4
P, = AP AT+Q. )

where A and Q are formed as follows. The time-invariant aggre-
gate state transition matrix A is a 6T0 X 6TV block-diagonal ma-
trix with diagonal elements AT, AU AU . and A"-1 cor-
responding to the 6Tv-dimensional aggregate state vector in Equa-
tion (3). Each of the elements AV has to transform the states of all
of the T transceivers worn by the associated user. However because
we expect all users to behave with similar dynamics over time, the
state transitions are identical in form. In fact because we expect
all transceivers of each user to behave with similar dynamics over
time, their state transitions are also identical. The state transition
matrix corresponding to a PV dynamic model corresponding to the
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state in Equation (1) would be a block diagonal matrix with three
identical blocks
1 &
Af[01}7 ©)

for x, y, and z. Moving up to the level of a user with state as in Equa-
tion (2), the state transition matrix would be formed as a block-
diagonal series of T copies of A in Equation (6). These are then
substituted back into the v block-diagonal elements of A above
and used to transition the aggregate state and covariance matrices
in Equation (4) and Equation (5).

Because we expect all users and transceivers to behave with sim-
ilar dynamics over time, the aggregate 6Tv x 6Tv block-diagonal
process noise matrix QQ is both time-invariant and formed from
a series of identically constructed block elements QUT, Q%% ...,
and Q-1 each assembled from 61 block-diagonal elements Q
formed as

3
ol = ¢, )

2
01,2 = 0[2.1] = q(ﬁé) ,and ®)
0[2,2] = qbr. )

Each such 2 x 2 block element formed from Equations (7)—(9)
models the process noise for one dimension (x, y, or z) of the user-
specific state in Equation (2). While a more complete explanation
for the elements of Equation (9) can be found in [BH96], the basic
idea is that the Kalman filter assumes the process is stimulated or
“fed” by a normally-distributed, zero-mean, spectrally white, pro-
cess noise q. We used the method from [WBO1] applied to a PV
process model to choose ¢, and build the aggregate block diag-
onal 6TV X 6TV process noise matrix Q from 3tv copies of the
2 x 2 block element from Equation (9)—three 2 x 2 blocks per
transceiver, times T transceivers, times U users.

3.2. Measurement Update

In the measurement update step of the EKF we collect all of the
individual measurements from the environment and reference user
transceivers associated with the target user, and fuse them with the
a priori aggregate state and error covariance estimates X, and PP~
for that user, obtaining a posteriori aggregate state and error co-
variance estimates X and Py.

For acoustic transceivers, each measurement from one
transceiver to another is a scalar distance. Depending on the
number of users (v), transceivers per user (T), and transceivers
in the environment (€), the number of possible measurements
(transceiver combinations) could be quite large. For the sake
of completeness we describe all combinations here, however in
practice we prioritize and limit the measurements as described later
in the paper. Note also that for an acoustic system, a transmission
(sound) emanating from one transceiver could possibly be received
(“heard”) by all other transceivers on the target user and the
reference users, and fixed in the environment, offering significant
measurement per time efficiencies.

Like a conventional global approach one can acquire measure-
ments between the T target user-worn and € environment-mounted

transceivers, and store the measurements in a Te-dimensional mea-
surement vector ZET‘E. One can also acquire body-relative (intra-
user) measurements comprising a single measurement from each of
the target user’s T body-worn transceivers to each of their remain-
ing T— 1 body-worn transceivers, and form a T(t — 1)-dimensional
measurement vector Z,S ©YT_Finally, one can also acquire coopera-
tive (inter-user) measurements comprising a single measurement
from each of the target user’s T body-worn transceivers to each
of the T body-worn transceivers for each of the v — 1 reference
users and form v — 1 distinct t>-dimensional measurement vectors
ZkT"U“" (i=1,2,...,0—1). The aggregate measurement vector Z;
includes all environment, body-relative (intra-user), and reference
user (inter-user) measurements associated with a particular target
user:

Zy = [Z,‘jT*EZ,‘jT‘”T,Z:T’U“' 7Z,‘€JT’U“27...7Z,ST’U“““] T (0
and has dimension
7 = et+t(t— 1)+ (v—1)
= TE+T°0—T. an

The measurement-update of the Kalman filter requires a mea-
surement noise covariance matrix R, or in our case an aggregate
measurement matrix R, which would have the same dimension-
ality (rows and columns) as Equation (10). If one assumes there
is no correlation between measurements, R becomes a relatively
straightforward diagonal matrix with the diagonal entries set to the
expected autocovariance of the range measurements, which could
be constant or computed as a function of other conditions.

The theoretical optimality of the Kalman filter assumes the as-
sociated random measurement noise is normally-distributed, zero-
mean, and spectrally white. Compared to the process noise ¢ mag-
nitude in Equations (7)—(9), the measurement noise magnitude can
be estimated with relative ease based on past experience, in a
bench-top test setup, or in simulation.

The aggregate Kalman filter measurement update requires both
the actual measurements Z; from Equation (10), and a measure-
ment prediction vector Zj of the same size. The elements of the
measurement prediction vector are computed (not measured) val-
ues that indicate what the measurements should be, given the cur-
rent a priori state estimate X~ from Equation (4), and a model for
the state-measurement relationships.

In practice the state-measurement model is implemented with a
measurement function that takes a state vector as input and pro-
duces a measurement vector as output. By convention, the function
is named h, i.e. a measurement prediction Z; would be computed
from a state vector X; via Z; = h(X;). In our case, the measure-
ment function should return the Euclidian distance between fwo
transceivers, each represented by its own state vector Xkl and sz.
So in our case, the appropriate measurement function would be

Ze = h(X} . X0), (12)

where Z; is a scalar distance. Using user-specific state vectors from
Equation (2), each which reflects the state of the T transceivers for
that user, we can assemble an aggregate measurement prediction
vector to match Equation (10) as
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Ty = [h(XUT,XE)T,h(XUT,X,ST)T,

Ug,

h(XUT7Xk )T7---7h(X]gl7XkURD_l)T]T7 (13)

which like Z; in Equation (10) has dimension z = 1€ + 2y —Ttas
derived in Equation (11).

The EKF measurement update step also requires the Jacobian
representing the partial derivative of the measurement function with
respect to each element of estimated state used in the function, i.e.
a measurement Jacobian H; would be computed from the function
h and state vector X via Hy = 0h(X})/0X;. In our case, because the
measurement functions compute the Euclidian distance between
two transceivers as discussed above and shown in Equation (12),
the appropriate Jacobian would be

Oh(Xy . XP) | Oh(Xy X})
ox! ox?
where Hj, has the same number of rows as the measurement func-
tion & in the numerator and the same number of columns as the
state in the denominator. Using user-specific measurement predic-
tion functions from Equation (13) and the two-parameter Jacobian
from Equation (14) we can assemble an aggregate Jacobian matrix

H, =

. (14)

r[ onXx’T.x") oh(Xm X" 17
X OX
[ onX T .X") on(X." X.T) }
L X" X" ]
X X (X X, ")
X, ax,
He= | [ oo™ L s x™) ] as)
X x™
[an(xr x,">") Lo g X ]
anUT aX:JRu—I |

As most of the measurements do not depend on most elements of
the states, the aggregate Jacobian matrix Equation (15) will have a
sparse block structure similar to the other aggregate matrices.

Finally, per the normal EKF we compute the aggregate measure-
ment innovation

AZy = Ty — T, (16)

and the aggregate Kalman gain K; as in Equation (1.11) from
[WB95], and then compute the a posteriori aggregate state and error
covariance estimates corresponding to Equations (1.12) and (1.13)
in [WB95]. We then advance the time step and begin the entire
predict-correct process over again.

3.3. Measurement Evaluation and Selection

If one was to exhaustively measure all transceiver combinations,
the COMOCAP approach could result in a large number of mea-
surements. Here we describe an adaptation of the approach intro-
duced by [HB83] for evaluating and selecting the most valuable
measurements at each measurement update step. We refer to this as
Measurement-Selection COMOCAP (MS-COMOCAP).

(© 2018 The Author(s)
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The error covariance matrix [P, offers an indication of how much
confidence the EKF has in its estimates of the state. Because the
measurement Jacobian matrix Equation (15) represents the ratio
of change in measurement with respect to state, one can use it to
project the state error covariance into the measurement space. Dur-
ing the the measurement update step (Section 3.2) we compare this
projection to the expected measurement noise to determine which
candidate measurements would address the largest uncertainties.

To begin with we note that the real range measurements Z; in the
aggregate measurement vector Z; in Equation (10) can be modeled
as a true (unknown) measurement Z; plus a normally-distributed,
zero-mean, and spectrally white random noise signal, i.e.

Zi =25+, 17)

where v ~ N(0,R) is an appropriately-sized vector of random vari-
ables representing the real measurement noise, and R is the same
covariance discussed after Equation (10) above. We zero out any el-
ements of AZ;, corresponding to unchosen measurements, to elim-
inate any effects on the corresponding state elements.

To simplify the remaining explanation we eliminate the time step

k notation. Considering the aggregate versions of the vectors and

matrices, including an appropriately sized aggregate measurement

noise vector V corresponding to ¥ above, and noting from Equa-

tion (17) that 7 = Z — Z, we formulate Z as the ratio of measurement
prediction error vector to measurement noise:
Z = (2-2)/@-12)

= (Z-172)/9. (18)

Note that like Z; in Equation (10) and Z in Equation (13), Z in
Equation (18) has z elements. As such we can define the elements
of Z as [Z1,2,,...,Z;], and consider a weighted combination of the
measurement prediction error elements:

W = a121+a222+...+azZz
=d'7 (19)

we can then reformulate W as an error covariance

I Z
ofr =Y Y @a;(Sij/Rij) =a' (S./R)a,  (0)
i=1j=1
where S; ; are the individual elements of

S=HP H', 1)

which is the state error covariance projected into the measurement
space, and R; ; are the individual elements of the measurement
noise covariance R described after Equation (10).

A relatively large G%V in Equation (20) would indicate a rela-
tively large reduction of state error covariance (state estimation un-
certainty) for the corresponding measurement. As such we seek a
linear combination of measurement choices, based on the current
statistics and models, that maximizes 63, under the constraint that
a'a=1. To find the optimal weightings we use the Lagrangian
multiplier method:

ooy —AMa a—1)]
da
By substituting Equation (20) into Equation (22), we get

=0. (22)
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ola" (S./R)a—Ma"a—1)]
da

=0, (23)
which simplifies to
[(S./R) —Ala=0. (24)

In general the solution to Equation (24) can be found by determin-
ing the eigenvectors and eigenvalues of S./R. Recall that we as-
sume every measurement is independent, therefore R is a diagonal
matrix. As such one can choose measurements by simply divid-
ing the eigenvalues of S by the diagonal elements of R, element
by element, to obtain a series of ratios that indicate the impact of
the corresponding measurement on the state error covariance. The
larger the ratio, the greater that measurement will impact on the
state estimation. As such we sort all of the ratios in descending or-
der, and obtain and use the top measurements for the Kalman filter
measurement update. For our simulation setup (described below)
we used the top 2/3 measurement contenders.

4. Pilot Experiments

Here we describe the pilot simulation experiments we performed
to evaluate and compare the three methods: COMOCAP EKF, MS-
COMOCAP EKEF, and a standard EKF implementation.

4.1. Materials

We based our simulation on a real optical MOCAP setup in our lab,
with six OptiTrack cameras mounted on three tripods and arranged
around a small room-sized real walking area. As shown in Figure 2
we used the OptiTrack system (left) to track three points on the
user’s body: head, left wrist, and right wrist; and we simulated 13
body-mounted transceivers (right) on each of two humans, plus two
environment-mounted transceivers on two of the three tripods.

6 Real
OptiTrack
Cameras

Simulated
Acoustic
Transceiver 2

1

Simulated
Acoustic
Transceiver 0

13 Simulated
Acoustic
Transceivers

Simulated
Acoustic
Transceiver 3

L

Acoustic
Transceiver 1

Figure 2: Illustration of our simulation setup: Left: three tripods with
each two OptiTrack cameras and two environment-mounted transceivers on
two tripods. Right: three tracked OptiTrack markers (head, left wrist, right
wrist) and 13 body-mounted transceivers.

4.2. Method

Movement Scenario. We based our simulation on real MOCAP
data collected from two people who walked towards each other over
a distance of approximately two meters, and then shook their hands.
This scenario allowed us to compare inter-individual distances be-
tween two people, leading up to the worst-case situation of existing
MOCAP systems that occurs when two people touch each other.

Ground Truth Data. We captured the three body points over the
scenario, filtered the data, and treated the smooth tracks as the
“ground truth” for our simulations. Capturing data simultaneously
from two actors performing turned out to be problematic due to
missing (occluded) or inaccurate tracking data at the moment when
they shook their hands. As such we decided to capture the move-
ments of the two actors separately, and then combine them.

Simulation. Our simulation was performed in Matlab. We cal-
culated the distances between every two transceivers, including
inter-individual distances between transceivers on each partici-
pant, intra-individual distances between each two transceivers on
one participant, and distances between the body-mounted and
environment-mounted transceivers. We simulated measurement
noise by adding a normally distributed zero mean signal to the dis-
tances. Based on published noise magnitudes from [FHP9S, Val02]
we used 6 =2 mm. We used this same magnitude for the measure-
ment covariance matrix R of the Kalman filter. For our COMOCAP
EKF method and MS-COMOCAP EKF method, we acquired both
the cooperative measurements and environment-reference mea-
surements. For the original EKF method, we only simulated the
environment-reference measurements. We simulated occlusions by
excluding three of the four environment-reference measurements
for the entire simulation.

4.3. Results and Discussion

Wrist Motion. Figure 3(left) shows the x position of one actor’s
right wrist along the main movement direction towards the other ac-
tor and its estimation by the three considered methods (COMOCAP
EKF, MS-COMOCAP EKEF, and original EKF). Figure 3(right)
shows a zoomed-in view of the dashed-line window—the short
window from frame =100 to frame =200. Overall our COMO-
CAP EKF estimation (in red) is the closest to the ground truth
(black) while the original EKF estimation (blue) is the furthest from
the ground truth. The MS-COMOCAP EKEF estimation (green) is
in between. These overall results may be explained by the informa-
tion used by each method: the COMOCAP EKF used the cooper-
ative and environment-reference measurements, while the original
EKF used only the environment-reference measurements. For MS-
COMOCAP EKE, the top 2/3 of the measurements were used, in-
cluding cooperative and environment-reference measurements. As
can be seen in Figure 3(right), the period associated with frames
110-130 exhibits relatively large error for all of the methods. This
is a result of EKF prediction overshoot given our filter tuning (EKF
model parameter settings) and the prolonged period of relatively
constant velocity during the period associated with frames 90-110
shown in Figure 3. The use of a multi-modal (multiple model) filter
approach [ABWO01] would likely improve this situation.

To help illustrate the performance we plotted each method’s es-
timation errors, i.e., the differences between the estimates and the
ground truth. As shown in Figure 4(left), the COMOCAP EKF es-
timates are closest to the ground truth. Although MS-COMOCAP
EKF took only 2/3 the measurements of COMOCAP EKEF, it per-
formed only a little worse. The original EKF performed worst as its
estimation is the furthest from the ground truth.

Shaking Hands. The closer the two participants get, the more ac-

curate their relative positions need to be. With the COMOCAP

(© 2018 The Author(s)
Eurographics Proceedings (©) 2018 The Eurographics Association.
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Figure 3: (Left) The ground truth data of one participant’s right wrist along the x-axis position and its estimations by COMOCAP EKF, MS-COMOCAP

EKE, and the original EKF. (Right) Zoom-in view of the dashed-line window.
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Figure 4: (Left) Errors in COMOCAP EKF, MS-COMOCAP EKF and the original EKF estimation compared to the ground truth. (Right) The relative errors
of COMOCAP EKF, MS-COMOCAP EKF and the original EKF estimation when the distance between the two wrist points decreased (proximity scenario).

methods, the cooperative measurements between the two partici-
pants provided a direct observation of their relative position. Since
the two participants got close and shook their hands with their right
hands in the simulation experiment, we took both participants’ right
wrist points and plotted the relative error of the two points’ 3D esti-
mation error covariances summation over their distance. As visual-
ized in Figure 4(right), when the two wrist points get closer to each
other in order to shake their hands, the relative errors of both CO-
MOCAP EKF and MS-COMOCAP EKEF successfully remained at
similar levels. However, for the original EKF estimation, the rel-
ative error increased greatly due to the lack of direct observation
data of their relative positions.

Occlusion Case. We evaluated situations when three of the
four environment-fixed reference points were occluded (see Fig-
ure 5). The figure shows that even though there was only one
environment-reference measurement, both COMOCAP EKF and
MS-COMOCAP EKF were still able to estimate motions be-
cause the cooperative measurements between participants provided
enough observations. However, the original EKF, which only con-
sidered environment-reference measurements, failed to estimate
motions because there were not enough observations acquired.

Overall, our pilot simulation results suggest that both COMO-
CAP EKF and MS-COMOCAP EKF can provide improvements
over the original EKF method in three ways:

1. the accuracy of absolute position estimates can be increased due
to the additional cooperative measurements;

the relative errors between two users can be reduced due to the
direct measurements between sensors on their bodies, which are
more pronounced when the sensors are getting very close; and

2.

(© 2018 The Author(s)
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3. the robustness to occlusion can be greatly improved when two
users are close to each other compared to classical environment-

reference MOCAP tracking.
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Figure 5: Estimations of COMOCAP EKF, MS-COMOCAP EKF and the
original EKF when three of the four environment reference points were oc-
cluded (occlusion scenario).

5. Conclusion and Future Work

We presented a novel approach to MOCAP that combines and
extends conventional global and body-relative approaches by dis-
tributing both sensing and active signaling over each person’s body
to facilitate body-relative (intra-user) and body-body (inter-user)
measurements for multiple people, in an approach we call cooper-
ative motion capture (COMOCAP). Simulation results from a CO-
MOCAP system comprised of acoustic fransceivers suggest advan-
tages in terms of improving accuracy and robustness to occlusions
in situations of close proximity between multiple persons. COMO-
CAP could improve existing and novel tracking systems.
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Related to our work, Vallidis and Bishop presented an acous-
tic ranging approach that, unlike narrow band (e.g., ultrasonic)
acoustic systems, is relatively robust to occlusions as the spread
spectrum signals can diffract around objects and still esti-
mate distance [Val02]. However acoustic sensors are not omni-
directional—signal strength is dependent on angle in comparison to
retroreflective optical markers. We believe that the most robust ap-
proach would be to combine multiple modalities, e.g., optical track-
ing for the environment references and acoustic ranging for body-
relative and cooperative measurements. The EKF-based approach
is general enough to support any hybrid combination of modalities.

In the future we plan to extend it to a hybrid optical-acoustic
system, e.g., by combining it with HTC’s Lighthouse 2 in confined
physical spaces (Room-Scale VR), where we expect inter- and intra-
user occlusions as discussed in this paper to be prevalent.
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