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Abstract

Facial performance capture is used for animation production that projects a performer’s facial expression to a computer graph-
ics model. Retro-reflective markers and cameras are widely used for the performance capture. To capture expressions, we need
to place markers on the performer’s face and calibrate the intrinsic and extrinsic parameters of cameras in advance. However,
the measurable space is limited to the calibrated area. In this paper, we propose a system to capture facial performance using
a smart eyewear with photo reflective sensors and machine learning technique.

CCS Concepts
eHardware — Sensor devices and platforms;

1. Introduction

One’s facial expression conveys non-verbal information, such as
one’s emotional state and psychological state, to others. It plays a
vital role in conveying meanings that cannot be expressed in words
in the context of everyday communication and content creation,
such as sitcoms and human drama. In the field of computer graph-
ics (CQG), facial performance capture systems are used to acquire
the facial expressions of performers continuously. By reflecting the
facial expressions to a three-dimensional (3D) face model, it is
possible to produce an animation without performing a significant
amount of physical calculation.

Common facial performance capture techniques use retro-
reflective markers and multiple cameras to capture the expressions
robustly [Wil90,BGY *13,HCTW11]. However, such systems need
many markers on facial skin for every recording. In addition, they
require the pre-calibration of internal and external camera parame-
ters, such as lens distortions and the position and orientation of the
cameras, and we cannot move the cameras during capturing. Other
methods use monocular cameras [GVWT13, WBGB16, CBZB15,
RHKK11] and commodity RGB-D cameras [BWP13, WBLP11]
to reduce the cost of pre-calibration. These methods capture faces
with a small hardware setting, but the space that can track a face is
still limited due to the viewing angle of the camera and occlusions.

There are several methods for recognizing facial expressions us-
ing wearable devices instead of cameras [GS14, SFP99, MSO*16].
Masai et al. developed a system to classify basic facial expressions
using a smart eyewear with photo-reflective sensors and machine
learning [MSO™16]. They measure the proximity between the skin
surface on a face and the eyewear with the sensors. Their method
allows the classification of facial expressions in many situations.
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Figure 1: Our system estimates 3D points on the skin surface us-
ing smart eyewear. We can retarget the facial expression to the 3D
model from the points.

However, the authors do not try to estimate geometry change with
different facial expressions.

In this research, we propose a facial performance capture sys-
tem using the smart eyewear developed by Masai [MSO*16]. We
combine the external device also to obtain the information of the
movement of the mouth. Then, we construct a regression model
that expresses the relationship between the marker position of the
motion capture system and values of the photo reflective sensors
and estimate the 3D position of the skin surface from the wearable
device using the regression model. We evaluate the estimation ac-
curacy of the marker position. We show that our system can capture
facial performance by applying the estimated marker position to 3D
face model (Figure 1).
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2. Related Works
2.1. Facial performance capture using cameras

In the field of facial performance capture, marker-based tech-
niques are widely used in research and content production scenarios
[Wil90,BGY* 13, HCTW11]. Williams developed a method to con-
trol the face of a computer-generated animation model [Wil90]. His
method follows the facial expressions of multiple retro-reflective
markers affixed to the skin surface of the user’s face. Commercial
systems such as Natural Point’s Optitrack or Vicon acquire facial
expressions by tracking the light reflected by the marker with multi-
ple cameras and measuring the 3D position in real space. Although
this method can accurately estimate the 3D position, there are three
problems. First, the preparation cost is high, such as the arrange-
ment of markers and calibration of cameras installed in the envi-
ronment. Second, the processing cost is also high because a large
number of camera images are used. Besides, the measurable space
is limited to the calibrated area.

Marker-less methods have also been studied to reduce the cost of
pre-calibration. Structured light techniques can compute the depth
map of the moving facial surface. The techniques use the pro-
jected light pattern texture measured with a camera [PVGO96,
WLVGP09]. Zhang and colleagues generated an individual face
model offline [ZSCS04]. The authors fitted a face template mesh
to depth map and combined it with optical flow. Passive capture
(multi-view capture) using multiple two-dimensional (2D) images
have also been studied [BHPS10, GFT*11, BHB*11]. Ghosh and
colleagues statically reconstructed facial geometry from diffuse
and specular reflectance information using polarized spherical gra-
dient illumination [GFT*11]. Also, Beeler et al. dynamically re-
constructed the pore-level geometry including wrinkles and folds
from seven camera images by considering the similarity of facial
expressions between different frames [BHB* 11]. Compared with
the marker-based techniques, a marker-less method can acquire
spatiotemporal geometry of the face with a higher resolution. How-
ever, it still requires the preparation cost to set projectors, special
light sources, multiple cameras, etc.

To reduce the complexity of hardware setting in multi-view cap-
ture, researchers investigated the methods of densely reconstruct-
ing geometric shapes with a pair of stereo cameras [VWB™12] and
monocular cameras [GVWT13, WBGB16]. Wu et al. reconstructed
facial performances from a monocular camera using a local defor-
mation model with anatomical constraints [WBGB16].

The researchers developed the methods by lowering the resolu-
tion to reduce the computational cost and to enable real-time fa-
cial performance capture and retargeting. These methods use com-
modity RGB-D cameras [BWP13, WBLP11] or monocular cam-
eras [CBZB15,RHKKI11]. Weise et al. calculated the blend shape
parameter of the 3D face model from the commodity RGB-D cam-
era, so that the user can control the facial expressions of animations
in real-time at a low cost [WBLP11]. In these methods, there are
relatively few instruments used for measurement, and preparations
in advance are simplified. However, the limitation of tracking space
using a camera is still a problem.

2.2. Facial performance capture using sensors

Research has been done to acquire the facial expressions of users
without cameras. Speech-driven animation, a technique that con-
trols face models based on speech signals, can reproduce facial ex-
pressions based on language information [Bra99, CB05]. However,
the user needs to say something when acquiring facial expressions.
Moreover, it is difficult to obtain the movements with low relevance
to speaking, such as those of the eyebrows and eyes.

Several studies have used a contact-type sensor for acquiring fa-
cial expressions. Scheirer et al. recognized the movement of facial
muscles related to facial expressions such as confusion and interest
using a piezoelectric sensor [SFP99]. Li et al. placed the strain sen-
sor inside the HMD and estimated the shape of the upper part of the
face covered with the HMD from the sensor values. They combined
this with the RGB-D camera installed in the HMD to acquire the
expression of the whole face [LTO*15]. Jorge et al. controlled the
mesh model of the face using the EMG sensors [LM99]. The EMG
signal from the face is useful information for acquiring the move-
ment of the muscles of the face. The authors put the electrodes on
a set of modeled facial muscles. Gruebler and Suzuki developed a
wearable device that can recognize positive facial expressions using
EMG sensors [GS14]. Although these methods do not use cameras
in environments to acquire facial expressions, it is necessary for the
sensors to be in close contact with the skin surface of the face. This
feature causes concern about the stability of the device position and
the comfortability when we wear it for a long time.

On the other hand, photo reflective sensors can measure facial
expressions without contact [FTT13,MSOI13,MSO* 16]. Masai et
al. classified basic facial expressions of users using eyewear-type
devices with multiple infrared photo reflective sensors [MSO*16].
Since the distance to the skin surface from the sensor changes with
different facial expressions, the reflection intensity information of
the sensor also changes. This device can be used in daily life. How-
ever, the authors do not try to estimate geometric changes with dif-
ferent facial expressions.

3. Proposed Method

In this study, we present a facial performance capture system using
a smart eyewear where the photo reflective sensors are embedded.
We estimate facial geometry from the reflection intensity informa-
tion acquired by the sensors in the device. This method is divided
into a training phase and an estimation phase (Figure 2). In the
training phase, we acquire the dataset from the motion capture sys-
tem and the eyewear device. Concretely, we obtain the position of
the markers used for motion capture correlating to facial geometry
from the motion capture and reflection intensity information from
the eyewear. We convert the intensity information into the distance
and reduce the dimension of the marker position by applying prin-
cipal component analysis (PCA). Then, we generate a regression
model representing the relationship between the two. In the estima-
tion phase, using the regression model, we estimate the 3D position
of the markers representing the facial expression shape of the user
from the sensor information acquired by the device. We retarget the
facial expression to the 3D model based on the estimated marker
position.
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Figure 2: Our system constructs a regression model that expresses
the relationship between the marker position and values of the sen-
sors in training phase and uses the regression model for estimation.
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3.1. Acquisition of mouth opening and closing using photo
reflective sensors

The eyewear developed in [MSO™16] cannot measure the defor-
mation of the lower jaw, etc., where the change does not appear
on the cheek. In this research, we measure the skin deformation of
the whole face. Therefore, we made the external device to acquire
the information related to the approximate shape of the mouth. We
combined the eyewear device with the external device. The sen-
sors on the external device measure the temporomandibular joint
and lower jaw where skin deformation occurs with the opening and
closing of the mouth.

3.2. Conversion from reflection intensity information to
distance information

According to [MSO™16], reflection intensity information acquired
by the sensors has a nonlinear relationship with the distance to the
skin surface. Since it is expected that the distance can be approxi-
mated to the linear relationship with the marker position informa-
tion, the conversion from reflection intensity information to the dis-
tance value by polynomial approximation prevents the regression
model from becoming complicated.

3.3. Dimension reduction of marker position information
using PCA

Since the number of dimensions of the sensors information is
smaller than that of the markers position information, it is diffi-
cult to construct a regression model directly. Therefore, we per-
form the dimension reduction process of the marker position us-
ing PCA. The dimension reduction by PCA is used to construct
a linear model expressing a non-rigid surface [SPIFO7] or face
[BV99, LCXS09] as a linear combination of basic shapes, and it
is possible to represent arbitrary shapes with fewer parameters.
We apply PCA to the marker position information in the training
dataset to generate a model that expresses the position of the mark-
ers on the face with few parameters.

The positions of the V markers are expressed as vectors of 3V
dimension since each marker is represented by 3D coordinates. By
applying PCA to the space of 3V dimension where the marker po-
sition information of the training data is distributed We retain N
principal components Sg = {s1,...,53v} € RY (1 <k < N).
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Figure 3: Each principal component shows the representative fa-

cial expression change of the user. The principal component score
corresponds to the weight of the expression.

Vector § corresponding to an arbitrary marker arrangement can be
written as Equation 1. The principal component scores are oy, and
the average value of each marker position is stored in the array S.
We obtain the principal component scores by the regression model
(Equation 2) in Section 3.4.

N,
S=585+Y aSi )
k=1
The principal components represent the position changes of all
markers corresponding to the user’s representative facial expres-
sions. We can represent the arbitrary marker arrangement by the
linear combination of principal components. Therefore, using this
method, we can represent the marker position of the 3V dimension
of the skin surface at the time of arbitrary expression using the N,
dimensional principal component scores.

3.4. Constructing the Regression Model

To estimate the marker displacement using the sensors of the de-
vice, we construct a linear regression model that expresses the rela-
tionship between sensor information and each principal component
score.

We make N, regression models with explanatory variables as D
photo reflective sensor information and object variables as princi-
pal component scores of the k th principal component. When the
photo reflective sensor information is x, the coefficients are wy, @
corresponding to the principal component scores can be expressed
as follows:

W =wo+wixy+...+wpxp 2)

3.5. Estimation of the Marker Position

In the estimation phase, we predict the principal component scores
from the sensor information. The sensor information is converted
into the distance information. We predict with the regression model
generated in Section 3.4. After that, as described in Section 3.3, the
marker positions are estimated by the principal component scores.
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(a)

Figure 4: Our system settings (a) sensor layout of eyewear; (b) the extension device, (c) layout of markers

It can reflect in the 3D face model based on the estimated posi-
tion information of the marker. In addition, the proposed method
does not require a motion capture system after constructing the re-
gression model and can estimate the 3D point of the face surface
without being subject to spatial constraints.

4. Implementation

We extended the eyewear arranged with 16 photo reflective sen-
sors around the eyes (Figure 4a). The extension part is an ear-hook
type. The two parts are attached to both sides of the temples. We
created the body of the extension parts with a 3D printer (Figure
4b). We placed the same photo reflective sensors (Kodenshi-SG
105) as those used in [MSO™ 16] near the temporomandibular joints
and lower jaws and added four sensors in total. The sensors on the
extension part were wired to Arduino Uno. We used serial com-
munication with client applications at a speed of 250,000 bits per
second. We attempted to reduce the influence of ambient light by
switching the sensor LED on and off and measuring the difference,
as shown in [MSO*16].

For the motion capture system software, we used Natural Point’s
Arena Expression Facial Motion Capture 1.8.6. The motion capture
system software was operated on the desktop computer. UDP com-
munication was performed with the desktop computer as the server
and the notebook computer as the client. The data was transmit-
ted to the client application. If the device occludes some markers,
the system cannot calculate the positions of them. Therefore, we
arranged the markers so that the cameras can capture them regard-
less of the facial expression change (Figure 4c). Moreover, when
photo reflective sensors receive infrared light emitted by the LED
incorporated in the camera of the motion capture system, the sen-
sor value is much affected. Therefore, we use only the sensor values
which are when the strobe LED does not emit light by the median
filter taking the median value of 10 consecutive samples.

5. Evaluation
5.1. Evaluation Procedure

To verify the proposed method, we calculated the estimation error
of the marker position. We had three participants in this experiment.

(b) (c)

In the training phase, we asked each participant to wear the device.
Then, we placed the markers on the face. We asked the participants
to make the same facial expression as the expression shown on the
screen. The dataset of the expressions was pre-made. We switched
the expressions every 3 seconds. While the user made various ex-
pressions, we acquired the sensor information of the device and the
marker position information of the MoCap system at the same time.
We acquired a total of 5,000 datasets from each participant.

We presented about 600 expressions to the participants. These
facial expressions are based on the first to sixth principal compo-
nents of the marker position information measured by motion cap-
ture before the experiment. We randomly chose each value of the
components to the maximum, the origin, and the minimum, then
applied to the 3D model. We excluded outliers among the acquired
datasets. For outlier rejection, we set the value at four times of the
standard deviation of the marker positions. The number of outliers
for each participant was 165, 411, and 457 respectively. The num-
ber of samples differed among the expressions since the marker
could not follow up and the measurement temporarily stopped. The
training phase took about 30 minutes.

In the estimation phase, we created a total of 19 facial expres-
sions: a neutral expression, (A) six facial expressions in which val-
ues of the first to six principal components are randomly set as long
as the expression can be made by everyone, (B) six universal facial

Figure 5: Experiment environment
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Figure 6: The user face and the results of retargeting the marker position information estimated by the proposed method

expressions (happiness, disgust, anger, surprise, fear, and sadness)
defined by Ekman [EF71], (C) asymmetric expressions that are not
included in the basic facial expressions. In the same way as the
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Figure 7: Average estimation error of all participants with 16 sen-
sors on eyewear and with 20 sensors including the extended parts
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training, we presented the facial expressions for 10 seconds each,
and we let them make the same facial expression. At this time, the
estimated value is the marker position information estimated from
the sensor while the true value is the marker position information
measured by the motion capture system. The estimation error is the
root mean squared error for each marker. We considered the first
20 principal components for the regression model. The cumulative
contribution rate up to the 20th principal component was 99.0%.

5.2. Results

Figure 6 shows the comparison of facial expression retargeting be-
tween the user’s face as a ground truth and the result of retargeting
the marker position information estimated by the proposed method
to the 3D model. By comparing the user face with the estimated ex-
pression, our method can estimate the eyebrows, the movement of
the jaws in (I), (I), (III), and the pulling up of the cheeks in (IV),
(V). The system estimated the mouth shape based on the cheek
deformation and jaw joint movement. This made it difficult to esti-
mate the precise shape of the lips. We only can estimate with less
accuracy the raising of the mouth corner, as shown in (IV), and the
expression to deform the lower lip, as shown in (VI). Also, the es-
timation is insufficient for the movement of the eyelids and eyes
in (V). We assumed that it was difficult to estimate the positions
of these parts because the sensor values do not much change at the
time of facial expression change.

For the verification, we estimated the average values of estima-
tion errors for each marker of three subjects. Figure 7 shows the
result of the estimation using only 16 sensors around the eyes and
the result of the estimation with 20 sensors by adding the extended
device. The mean error for each type of expression is (A) 3.24 mm,
(B) 3.25 mm, and (C) 3.16 mm. The average errors for each par-
ticipant were 3.76 mm, 2.77 mm, and 3.05 mm. When using 16
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Figure 8: Time transition of the average error of markers and the heat map showing the difference between the result of our method and that
of the MoCap system. (i) disgust, (ii) fear, (iii) happiness, (iv) sadness, (v) surprise, (vi) one of the training sets.

sensors, the average error of all subjects was 3.95 mm. The aver-
age error of the eyes and the nose was 1.89 mm, and the average
error around the mouth was 6.97 mm. When using 20 sensors, the
average error of all subjects was 3.19 mm. The average error of the
eyes and the nose was 1.81 mm, and the average error around the
mouth was 5.21 mm.

5.3. Discussion

The average error of the markers around the eyes and nose was
remarkable even with 16 sensors (1.89mm). Although the accuracy
of estimation varies depending on the number of sensors near the
markers, Figure 7 shows that the extended parts reduced the error
around the mouth. The device added in this study improved the

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.



N. Asano, K. Masai, Y. Sugiura & M. Sugimoto / Facial Performance Capture by Embedded Photo Reflective Sensors on A Smart Eyewear 27

accuracy of estimating the shape around the mouth 1.76 mm in
average. However, still, we can see the estimation errors around the
jaw and lower lip, even after including the extended device. The
error of the lower lip (marker numbers 32 to 34) was larger than
that of the jaw (marker numbers 35 to 37). Adding more sensor
around mouth improves the estimation result.

Figure 8 shows a time transition of the average error of all mark-
ers when estimating the marker position of one subject by the pro-
posed method with 10,000 samples. The heat map showing the er-
ror distribution of each vertex when retargeting to the 3D model.
As shown in the figure, the error around the eyes, nose, and the
cheek are low over different expressions, and the operation is sta-
ble even when the facial expression changes. However, the high
error appears in the lower lip through-out the entire series, espe-
cially when an expression that deforms only the lower lip like (iv)
occurs (the estimation error exceeds 8 mm). The reason for this is
a small deformation of the lower lip hardly appears in the cheeks
and jaw joints on which the photo reflective sensors are arranged.
Furthermore, the facial expressions shown to the subjects in the
training phase were based on only the first to sixth principal com-
ponents. Since these principal components with a high contribution
ratio show typical deformation (Figure 3), we consider adding more
training expressions with minor deformation to improve the accu-
racy. For the jaw, the error in (v) is not particularly significant, so
there is a possibility of estimating the opening and closing. How-
ever, when the chin rises, as shown in (iii), or when the force is put
in the mouth, and the jaw is displaced forward, as shown in (iv), the
error is larger than the opening and closing. In this paper, the sen-
sors were arranged mainly to acquire the information of the open-
ing and closing of the mouth. The movement of the jaw when the
high error comes out and the opening and closing of the mouth are
different in places where the skin deformation occurs. Therefore,
we can solve the problem by increasing the sensor in the extended
device.

Since the marker-based motion capture systems have high ac-
curacy in the measurement of feature points on the face surface,
we used it for evaluating the accuracy by the device. However, the
system sometimes incorrectly labeled the marker. The reason for
this is that the tracking algorithm of the motion capture system is
not supposed to be used with the device. Therefore, when the de-
vice occluded a part of the marker, a lot of irregular errors occurred
in the measurement of markers positions. In this research, we at-
tempted to exclude them as outliers, but even if labeling is done
correctly, the measurement accuracy of the marker is lowered by
the occlusion. Furthermore, the motion capture system measures
the markers positions with infrared light. Since the sensors on the
device measure the reflection intensity of the infrared light, the in-
frared light from both can interfere with each other. The interfer-
ence causes noises on the sensors. We reduced the noise with the
median filter. However, this filtering process lowers the data acqui-
sition speed and takes longer time for the training phase. Consider-
ing the preparation cost and the practicality, the RGB cameras with
little interference can be the alternative. Although the accuracy gets
lower than that of marker-based techniques, it simplifies the system
since the user do not need to attach any marker on the face.

(© 2017 The Author(s)
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6. Limitations and future work

The system requires each user to learn and generate a regression
model. The eyewear system measures the distances from the sen-
sors on the device to the face. However, since the distance to the
face is different for each user, it is difficult for users to share the
same regression model. Also, the position of the device can be
shifted during use or when remounting it. These may require users
to re-calibrate and generate a new model. We think that this prob-
lem can be solved by applying the normalization method proposed
in [MSO*16] based on each sensor value when a user makes the
neutral expression and the range of each sensor value when mov-
ing facial muscles.

We want to make applications based on the proposed system in
the future. The first scenario is for live performance. This system
is suitable for seeing voice actors and their representative animated
characters on the stage because it is not necessary to place retro-
reflective markers on actors’ face surface after training. By retar-
geting the facial expression of an actor on the stage to an animated
character, we can make a new form of live performance in which
simultaneously both the actor and the animated character perform
a show. Since the space for tracking the face is not limited as in the
camera-based method, it is possible to follow the expression of the
actor even if the movement range of the actor is broad. The sec-
ond scenario is a new communication system. By using the smart
eyewear with a small display, the users can conduct a conversation
via an avatar that reflects the expression of the user. This system is
useful as a social networking service because users can communi-
cate non-verbal information using their facial expressions without
showing their faces. Users can communicate through the system in
daily situations thanks to the social acceptability of the device.

7. Conclusions

In this study, we proposed a facial performance capture system
using photo reflective sensors placed on smart eyewear. Our per-
formance capture system estimates 3D points on the skin surface
using a regression model. As the implementation, we designed an
extended sensor unit of the smart eyewear placed around ears to
improve the accuracy of our capture system in the mouth area. To
make the regression model, we obtained training datasets with a
conventional motion capture system and the photo reflective sen-
sors and applied machine learning techniques. In the evaluation,
we experimented and measured the estimation error of the marker
position to validate the accuracy of our system. As a result of the
experiment, the average total error of all markers was 3.19 mm. In
detail, the average error of the position of the markers around the
eyes and nose was 1.81 mm, and that of around the mouth was 5.21
mm with the extended sensor unit. The experiment confirmed that
the estimation accuracy of the marker around the mouth improved
1.76 mm by integrating the sensors.
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