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Abstract

In this document, we discuss a work-in-progress which will implement real-time marker tracking with the Microsoft Kinect. The
Kinect uses an infrared depth sensor to capture 3D video, and retroreflective surfaces are not visible to this sensor. Thus we can
adhere anular markers made of retroreflective material to a surface and identify them in the depth sensor’s output. By placing
a non-reflective surface at the marker’s center and identifying it in the depth image, we can track the marker a surface and map
it to a point in a virtual space. We are able to identify potential markers using an optimized and modified version of the flood
fill algorithm, and we will filter out noise by validating potential markers against the known topology and dimensions of the
markers.Our goal is to demonstrate real-time tracking and virtual representation of the marker using the Unity Game Engine.

Categories and Subject Descriptors (according to ACM CCS): 1.4.8 [Computer Graphics]: Scene Analysis—Tracking

1. Introduction

Currently the Microsoft Kinect SDK is only capable of tracking
humans and human appendages, and consequently it is not opti-
mized to track general objects with the Kinect [Kin]. This work-in-
progress aims to extend the Kinect’s capabilities by implementing
real-time marker tracking. This could quickly and efficiently pro-
duce a flexible, low cost solution for general purpose motion track-
ing.

The Kinect produces two images, the color image and the depth
image [Kin]. The depth image is produced using an infrared laser
whose surface reflections is then used to estimate distances. Mark-
ers made of retroreflective material thus provide an invalid depth
reading which is relatively easy to identify in the depth image.

The Unity3D Game Engine is a platform which supports the use
of C# scripts and is able to display virtual objects in a 3D scene
[Uni]. Microsoft also provides a Unity3D plugin for the Kinect
SDK. Thus we can use Unity3D to easily access the Kinect’s depth
image and visualize a virtual environment.

2. Planned Implementation

The project requires two components: a trackable marker which
can be affixed to a surface and software to identify and track the
marker.

The marker’s shape will be a symmetric shape with a square hole
at the centroid, and it will be made of retroreflective tape. For initial
testing, the marker will be affixed to a flat static surface which will
remain in the Kinect’s field of view. In the depth image, this marker
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will appear as a contiguous region of zeros with a non-zero island
at the centroid.

The tracking software will have three primary calculations stages
following acquisition of a depth image from the Kinect. These
stages will be to search for features in the depth image which might
be markers, filter out noise in the depth image, verify markers, and
map the markers to points in a three dimensional space.

The searching stage will primarily rely on a flood fill algorithm.
This algorithm is equivalent to a breadth first search in a graph
where each pixel corresponds to a graph node. The program takes
a pixel from a search queue and applies a decision function to the
pixel’s depth value. If the function returns true, the program records
the pixel as such and adds its Moore neighborhood to the search
queue. This produces a contiguous set of pixels satisfying the deci-
sion function, and recording pixels which fail the decision function
also produces the borders of holes. For this program, the decision
function will check whether the pixel’s value is non-zero; and it
will return true or false depending on what the program is currently
searching for. Without optimizations, three applications of this al-
gorithm, alternating from finding non-zero regions to zero regions
and back, is sufficient to identify potential markers in the depth im-
age.

The filtering stage will take the results from the searching stage
and produce features which correspond to markers. The primary
purpose of this stage is to filter out noise which may produce artifi-
cacts topologically identical to a marker. This noise can be filtered
by verifying known properties of the markers. First, markers must
have exactly one non-zero island. Additionally, that island must be
at the centroid of the feature. If the program knows the real-world
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size of a marker, and a potential marker has exactly one non-zero is-
land, then that island’s average depth value indicates the real-world
size of the feature. If this does not match the expected size, the fea-
ture is probably not a marker. Finally, if there is a set minimum
and maximum distance which markers may reside, features lying
outside that range can be filtered out.

The mapping stage will be the simplest due to pre-existing solu-
tions built into the Kinect SDK. The SDK can already map a pixel
in the depth image to a 3D coordinate. To map a marker to a 3D
coordinate in Unity, we only need to pick the pixel closest to the
centroid, use the Kinect SDK to convert it to 3D coordinates, and
perform a change of basis to correctly map that point to a point in
Unity’s space.

There are a number of potential optimizations for improving ex-
ecution time of this program. Some of the filtering checks are fast
and could significantly reduce the search space in the searching
stage if performed prior to searching. Specifically, if markers have
a known size and have a maximum possible distance from the depth
sensor, then there is a minimum possible feature size in the depth
image for a marker. Then there is a minimum width and a minimum
height for a marker. We can then map each pixel to one if it is non-
zero and zero otherwise. We can then map each row and column to
the sum of these Booleans. Columns and rows with no zero-regions
will map to their own length, and we can subtract a marker’s mini-
mum height and width from a column and row’s length respectively
to obtain a reliable threshold. Columns and rows below this thresh-
old might contain markers, and these correspond to a set of pixel
coordinates to test which should be smaller than the set of all pixels.

3. Results to Date

So far we have implemented prototype programs for capturing a
depth image, the searching stage of the tracking algorithm, and a
part of the filtering stage. We have also estimated the relationship
between the Kinect SDK’s depth values and real world distance.

Of particular note are the searching and filtering prototypes. For
this, we have used Python to implement the flood fill algorithm and
the row and columnwise filtering discussed in Section 2. For this
filtering, we have assumed a minimum marker height and width
of fifty pixels. The searching stage uses the flood fill algorithm to
search the remainder of the image for zero-regions.

To convert real world distances to the Kinect SDK’s depth val-
ues, we sampled pixels from depth images with known real-world
distances. Plotting real world distance against the corresponding
depth value indicated a linear relationship where 1 mm roughly
corresponds one unit on a scale from 0 to 4096 [Kin].

4. Future Work

Remaining work for this project includes completion of the filter-
ing stage as well as the mapping stage. We also need to port the
existing prototypes to Unity, and we need to implement a method
for tracking markers across multiple consecutive frames.

Future developments include optimizing the design of markers
for use on more general objects. With static objects and appropri-
ately placed markers, it would be possible to record the relationship

between markers and translate the virtual representations of corre-
sponding obstructed markers based upon the movement of visible
markers. These algorithms could also be ported to an importable
C# library for use in other virtual reality projects as an unobtrusive
supplement to the Kinect SDK.

Figure 1: A sample depth image converted to a grayscale JPEG.

Figure 2: Output from the prototype searching stage visualized
with Pyplot. Red pixels represent non-zero pixels in the depth im-
age. Black pixels represent pixels in the depth image with a depth
of zero. The X and Y axes are the X and Y coordinates of the corre-
sponding pixels in the depth image.
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