
International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2016)
D. Reiners, D. Iwai, and F. Steinicke (Editors)

Functional Reactive Augmented Reality: Proof of concept using an
extended augmented desktop with swipe interaction

Joao Paulo Oliveira Marum, J. Adam Jones, and H. Conrad Cunningham

Department of Computer and Information Science
University of Mississippi
University MS USA

Abstract

Functional Reactive Programing (FRP) is a new paradigm that has been evolving and used in many different fields, i.e.:
robotics, user interface and others. FRP was originally developed as a programming paradigm to handle animation and it
has since been used as a replacement for the observer pattern in systems that require order and accuracy when handling
large numbers of callbacks. Inaccuracy and ordering issues related to callbacks can negatively affect a user’s experience when
using a virtual environment (VE). We propose a framework for virtual environments, that we believe will improve the design of
them through the use of functional reactive capabilities. As a proof of the concept, we are currently developing a FRP-based
augmented desktop system that utilizes multiple virtual and real workspaces and gesture interactions for switching between
desktop contexts.

1. Introduction

Functional Reactive Programming (FRP) can be described as pro-
gramming with asynchronous data streams. This gives us the op-
portunity to remove callbacks, and consequently "callback hell",
and replace the typical observer pattern. A major advantage of FRP
is that it enables propagation of change and has a toolbox of func-
tions to combine, create and filter any data. A great deal of FRP
efforts have been directed toward computer graphics, but only a
few of these involved VEs. Of these, none have examined current
virtual environment technologies e.g. Kinect, Oculus and Leap Mo-
tion. The paradigm used for building software with callbacks and
the observer pattern entails many problems. As stated by Black-
heath and Jones(2016) [BJ16] the callback plagues us with "un-
predictable order in which events are received, difficult to guar-
antee that you have registered your listeners before you send the
first event. messy state machine style, threading issues, difficult to
guarantee that no more callbacks will be received after unregister-
ing a listener, leaking callbacks and accidental recursion". These
problems have the potential to affect the experience of VE users,
causing inaccuracy , event ordering issues and rendering problems.
In our research, we are aiming to determine if VE design can be
improved through the use of FRP, and if it is possible to integrate
existing FRP tools into common VE programming environments.
We believe this to be the case as FRP has shown to be beneficial
for dynamic environments such as user interfaces and robotics. For
instance, in user interface developers want elements of their soft-
ware to change or update as the user interacts with it. In robotics,

developers want that their autonomous devices to respond to a dy-
namic and sometimes unpredictable world. Virtual environments
have many of these same needs. The world itself becomes a spatial
interface and must also respond to the user’s actions, movements
and behaviours. VEs must respond to the sometimes unpredictable
actions of the user. These key elements make FRP beneficial for
interfaces and robotics, therefore it seems reasonable to speculate
that VEs can benefit from FRP as well. Our goal is to improve soft-
ware engineering procedures for VEs while also improving their
responsiveness. We are currently testing the integration of exist-
ing FRP tools, like Sodium and Elm, into existing VE tools, such
as Unity3d. We are also developing a FRP proof-of-concept to ex-
plore and demonstrate whether or not this is a feasible approach.
This proof-of-concept uses an augmented environment to impose
the multiple, low resolution virtual desktops around a high resolu-
tion, physical monitor containing the real desktop. Reactive gesture
detection enables the user to select a virtual desktop and transfer
it into the real monitor, where it can be seen and interacted with
in high resolution. This is conceptually similar to the focus-plus-
context screens described by Baudisch et al(2001) [BGS01].

2. Related Work

Much work has examined both FRP and VEs separately, but
very little work has looked at their combination. For the FRP
side, Czaplicki and Chong(2013) [CC13], and Blackheath and
Jones(2016) [BJ16], these papers examine the development of Elm

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/egve.20161450

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egve.20161450


J. P. O. Marum & J. A. Jones & H. C. Cunningham / Functional Reactive Augmented Reality

and Sodium, the two possible candidates examined in this paper.
There are also works that focus on the development and design of
virtual environments, such as Furness and Barfield(1995) [FB95].
We also examined similar works that mixed FRP and VE. Blom
and Beckhaus(2007) [BB07] examines the development and prac-
tical results of the development of a Functional Reactive Virtual
Reality systems. However, this work is no longer contemporary and
may not lend itself well to modern VE development environments.
Kraeutmann and Kindermann(2015) [KK15] describe the use of
reactive programming on the development of a "pong"-like game
with no virtual environment components. Kawai(2014) [Kaw14]
creates a Reactive Extension for Unity, which extends the Unity3D
object set, but it is motivated by solving web connections issues
related. Xie et al(2014) [XHC∗14] develops a game extending the
Model-View-Controller (MVC) pattern, by reactively respond to
inputs from user, but it only examines inputs coming from mouse.
The next ones are non FRP related VE applications that inspired the
choice of our conceptual tool. Baudisch et al(2001) [BGS01] exam-
ines a Focus plus context which has a low resolution projection of
the desktop in the wall, and a high resolution monitor that works
as a magnifier, enhancing the visualization of a particular area
while the rest remains visible, DiVerdi et al(2003) [DNH03] which
presents a 3D augmented reality desktop, and Jones et al(2013)
[JBOW13] examines a tool that augments the physical environment
surrounding a television to enhance interactive experiences.

3. Method

Among the many frameworks and tools available for the develop-
ment of virtual environments, we chose Unity3D, which relies on
the tight correspondence between the graphical workspace and the
script code written in UnityScript (proprietary language based on
JScript.Net) or C Sharp. Every element in the workspace exists as
an object with attributes that can be read or modified, allowing for
sensors and input devices to affect the scene. As the FRP compo-
nent in our project, we have selected candidate frameworks based
on their maturity, reliability, extendability, and whether or nor their
native language is supported by Unity3D. Based on these crite-
ria, we have selected two candidate frameworks: Elm and Sodium.
Sodium is a functional reactive programming library for multi-
ple languages. It has versions for C++, C Sharp, Java, Kotlin,
Scala, and Typescript/Javascript. It is based on Flapjax, Yampa,
scala.React, and a number of other Functional Reactive Program-
ming efforts. Sodium is also based on the idea of data cells and
streams. A Stream is represented by a list of time/value pairs de-
scribing the events within stream. A Cell is represented by a pair
(initial value, steps): the initial value pertains to all times before
the first step, and the time/value pairs give the discrete steps in the
cell’s value These objects can be anything predefined within the
language or user-defined types even types coming from other li-
braries. Elm is a concurrent FRP language focused on easily creat-
ing responsive GUIs. Elm has two major features: (1) purely func-
tional graphical layout and (2) support for Concurrent FRP. Purely
functional graphical layout is a high level framework for work-
ing with complex visual components. It makes it quick and easy
to create and combine text, images, and video into rich multime-
dia displays. Concurrent FRP solves some of FRP’s long-standing
efficiency problems: global delays and needless recomputation. To-

gether, Elm’s two major features simplify the complicated task of
creating responsive and usable graphical user interfaces.

4. Future Work

We are currently testing the candidate frameworks’ compatibility
with Unity3D. Meanwhile, we are developing the prototype of the
gesture detection in Unity and expanding this prototype to work
with the virtual desktops soon. As soon as we have a fully func-
tional augmented system prototype, it will be modified in a reac-
tive way, replacing the callbacks and synchronous calls for reac-
tive asynchronous data streams. The FRP-based augmented desk-
top system will have its performance compared with the original
augmented system to verify whether the benefits in the user’s and
developer’s experience stated were achieved or not.

5. Acknowledgement

This work has been done with support from CAPES, Coordination
for Enhancement of Academic Level Individuals - Brazil"

References
[BB07] BLOM K. J., BECKHAUS S.: Supporting the creation of dynamic,

interactive virtual environments. In Proceedings of the 2007 ACM sym-
posium on Virtual reality software and technology (2007), ACM, pp. 51–
54. 2

[BGS01] BAUDISCH P., GOOD N., STEWART P.: Focus plus context
screens: Combining display technology with visualization techniques.
In Proceedings of the 14th Annual ACM Symposium on User Interface
Software and Technology (New York, NY, USA, 2001), UIST ’01, ACM,
pp. 31–40. URL: http://doi.acm.org/10.1145/502348.
502354, doi:10.1145/502348.502354. 1, 2

[BJ16] BLACKHEATH S., JONES A.: Functional Reactive Programming.
Manning Publications Co., New York, USA, 2016. 1

[CC13] CZAPLICKI E., CHONG S.: Asynchronous functional reactive
programming for guis. In Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (New
York, NY, USA, 2013), PLDI ’13, ACM, pp. 411–422. URL: http://
doi.acm.org/10.1145/2491956.2462161, doi:10.1145/
2491956.2462161. 1

[DNH03] DIVERDI S., NURMI D., HOLLERER T.: Arwin-a desk-
top augmented reality window manager. In Proceedings of the 2Nd
IEEE/ACM International Symposium on Mixed and Augmented Real-
ity (Washington, DC, USA, 2003), ISMAR ’03, IEEE Computer Soci-
ety, pp. 298–. URL: http://dl.acm.org/citation.cfm?id=
946248.946839. 2

[FB95] FURNESS T. A., BARFIELD W.: Virtual Environments and Ad-
vanced Interface Design. Oxford Publications, Oxford, UK, 1995. 2

[JBOW13] JONES B. R., BENKO H., OFEK E., WILSON A. D.:
Illumiroom: Peripheral projected illusions for interactive experi-
ences. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (New York, NY, USA, 2013), CHI ’13,
ACM, pp. 869–878. URL: http://doi.acm.org/10.1145/
2470654.2466112, doi:10.1145/2470654.2466112. 2

[Kaw14] KAWAI Y.: Reactive extensions for unity. https://
github.com/neuecc/UniRx, 2014. 2

[KK15] KRAEUTMANN D., KINDERMANN P.: Functional reactive pro-
gramming and its application in functional game programming. 2

[XHC∗14] XIE Y., HOFMANN H., CHENG X., ET AL.: Reactive pro-
gramming for interactive graphics. Statistical Science 29, 2 (2014), 201–
213. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

14

http://doi.acm.org/10.1145/502348.502354
http://doi.acm.org/10.1145/502348.502354
http://dx.doi.org/10.1145/502348.502354
http://doi.acm.org/10.1145/2491956.2462161
http://doi.acm.org/10.1145/2491956.2462161
http://dx.doi.org/10.1145/2491956.2462161
http://dx.doi.org/10.1145/2491956.2462161
http://dl.acm.org/citation.cfm?id=946248.946839
http://dl.acm.org/citation.cfm?id=946248.946839
http://doi.acm.org/10.1145/2470654.2466112
http://doi.acm.org/10.1145/2470654.2466112
http://dx.doi.org/10.1145/2470654.2466112
https://github.com/neuecc/UniRx
https://github.com/neuecc/UniRx

