International Conference on Artificial Reality and Telexistence
Eurographics Symposium on Virtual Environments (2015)
M. Imura, P. Figueroa, and B. Mohler (Editors)

Yther: A Proposal and Initial Prototype of a Virtual Reality

Content Sharing System

A. Steed'

! Department of Computer Science, University College London

Abstract

There are many virtual reality development tools, but we argue that none has solved the disparate problems of
ease of content creation, openness of access for developers and broad support for a variety of immersive and non-
immersive virtual reality systems. Yther is a proposal and initial prototype of a platform for sharing immersive
and non-immersive virtual environments. Yther doesn’t propose a new content standard, but builds upon the Unity
system. The first contribution of Yther is a clear separation of concerns between development of content (zones)
and support for specific hardware. The second contribution is a set of abstractions that allow developer to author
interaction techniques and behaviours without specific reference to the interaction devices that any particular run-
time instance has. The third contribution is a mechanism within the Unity development environment for publishing
content so that it can be made available for testing and sharing very easily. The current implementation of Yther
is a prototype but it already demonstrates capabilities that distinguish it from similar systems.

Categories and Subject Descriptors (according to ACM CCS): INFORMATION INTERFACES AND PRESENTA-

TION [H.5.1]: Multimedia Information Systems—Artificial, augmented, and virtual realities

1. Introduction

The sharing of content between virtual environments sys-
tems is a complex technical problem. There are several is-
sues: the variety of content that needs to be supported, the
different architectures of the display systems, and the range
of potential interface devices and interaction techniques. The
need for common platforms for sharing content is given new
impetus by the growing interest in consumer virtual reality.
Larger content developers will be able to develop support
specifically for each consumer platform, but there may be
several consumer platforms, and within each consumer plat-
form there may be different configurations of input devices.
This may restrict the ability of small developers and hobby-
ists to access a large population of users

At the current time there is no roadmap, nor obvious step-
ping stones, from current practice to a virtual reality stan-
dard that supports simple content development. Some key
features that such a standard would have would be openness
of access to users across different hardware platforms, ease
of access for content developers to create and publish con-
tent, portability of content across different hardware systems

(© The Eurographics Association 2015.

DOI: 10.2312/egve.20151323

that users and developers have, and freedom to extend the
platform.

In this paper we describe and justify the design of Yther,
which is a modest attempt to create a framework to facilitate
sharing of certain types of virtual reality content. Yther, as
currently defined and implemented, is not an attempt to cre-
ate a standard, but is offered as an example of how key ab-
stractions can simplify the sharing of content. Yther is also
open, in that various parts of the Yther system will be made
open source. Anyone will be able to use Yther for free to
create and share content, and that content should be usable
by users that have a broad range of virtual reality systems.
Those users will not have to download multiple executables.
In effect, from a user’s point of view, they will experience a
“cyberspace”-like virtual environment, where different vir-
tual environments can be accessed by teleporting to named
locations, or by traversing portals in the environment.

As described in more detail in Section 3, Yther allows a
content developer to work in the Unity system to create a
Zone. A Zone can be a whole virtual environment, or simply
a piece of one. By imposing certain constraints and conven-
tions on the content and code that animates the content, a

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

www.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egve.20151323

152 A. Steed / Yther

Zone can be made that is independent of the specific input
devices or hardware that the developer, or any of their poten-
tial users may have. The content developer can then publish
the content and upload it to a content hosting service. Each
user will have a Deck, which is an executable that can browse
Zones. The user will chose a Deck based on the hardware
that they have, and new Decks can be programmed, also in
Unity, for specific hardware. Thus a member of the general
public might just download a Deck designed for the con-
sumer device they own, whereas a university lab might de-
velop their own Deck for their specific hardware or a Deck
that embodies a particular type of new interaction technique.

From a practical point of view Yther provides two pieces
of infrastructure. First: plugins and example assets for the
Unity system that facilitate the creation of Yther Zones in a
away the decouples Zone from Deck (see Section 4). Sec-
ond: example Decks and source in Unity demonstrating how
these Decks were constructed (see Section 5). The key fea-
ture that distinguishes Yther from similar systems is the set
of conventions that decouple virtual environment content
from the specific hardware.

2. Background
2.1. Virtual Reality Systems

The set of requirements for software systems that support
a broad range of virtual reality application is very large
[CSWO09]. A system needs to generate high-fidelity real-time
output and respond quickly to data from a variety of in-
put devices. Furthermore virtual reality systems may need
to support many display devices and thus they may be dis-
tributed across multiple physical machines that need to be
synchronized.

A broad commercial virtual reality software system such
as Vizard [Worl5] attempts to provide a uniform devel-
opment environment despite differing underlying hardware
and software. However, such a package cannot fulfill all the
needs of the potential user base. Thus a variety of other stan-
dards, libraries and frameworks have emerged.

To model the appearance of the virtual environment, the
use of some sort of scene-graph based representation is al-
most ubiquitous [Sow00]. Two competing requirements in
scene-graph choice are the efficiency and expressiveness of
the run-time system, and the support for import of assets (ge-
ometry, textures, sounds, etc.) from external sources. Com-
bined with the increasing use of Internet-based technolo-
gies, this had led to a few standards for scene representa-
tion, including X3D [Web15], Collada [Khr15a] and gITF
[Khr15b]. These have quite different aims: sharing of inter-
active 3D scenes to end-users’ browsers, support of inter-
change of assets in production of content and creation of
fixed assets for OpenGL-based browsers. Given the explo-
sion of interest in consumer virtual reality, several interest-
ing prototypes of online content storage have emerged. A

notable example is the JanusVR systems [McC15] which
embeds 3D scene description within HTML.

The scene-graph is only one component that is neces-
sary in a run-time virtual reality system. Virtual reality sys-
tems are characterized by the range of different devices that
they need to support. VRPN is a commonly-used library that
supports a variety of virtual reality peripherals [Unil5b].
The Diverse [KASK02] and VRJuggler [BJH*01] toolk-
its provide similar device support, but they also provide
higher-level frameworks for developing applications. How-
ever, these toolkits focus on supporting the programmer, not
the general virtual reality developer, who might expect to fo-
cus on scripting and asset creation.

Some toolkits have extended X3D with the functionality
needed to describe the novel interfaces and display config-
urations. For example, Behr et al. [BDR04] and Figueroa et
al. [FMJ*05] have proposed extensions to X3D to support
new input devices. While these proposals do allow different
platforms to be targeted within customized X3D-browers,
we argue that a separation of concerns should be made, and
that the scene should be described independently of specific
interface devices (see Section 4). Our proposal is to clearly
separate a browser-like piece of software from the scene de-
scription. Efforts such as X3Dom [BEJZ09] and XML3D
[SKR*10] that embed X3D within standard web browsers
such as Chrome and Firefox, are a step in a similar direc-
tion. Importantly though we also note that there is not likely
to be a single standard “browser” for virtual reality scenes
because of the variety of hardware. Thus to break the poten-
tially circular requirements, Yther targets the programming
of both browsers and scenes.

A complementary issue in virtual reality system design
is the programming language used. It is common to sup-
port a high-level scripting language, with the aim of simpli-
fying application description by exposing an interface to a
framework that hides underlying implementation complex-
ity. Thus the scripting language might be concerned with
behaviours of the objects in the scene, rather than low-
level message passing or display context creation. The va-
riety of languages proposed to be used is very wide includ-
ing TCL (in the DIVE system [FS98]), Java (OpenWon-
derland [Opel5]), Python (various, including [Worl5]) and
JavaScript (various, including [Fral5]).

Such high-level languages are very powerful, but the
framework that they address is arguably more important
than the language itself. There is no common agreement on
frameworks for virtual reality systems. One proposed stan-
dard is Open Source VR (OSVR) [OSV15] but this currently
targets an SDK, not a flexible architecture that is compos-
able at run-time. Long-term sustainability of frameworks has
previously been addressed by run-time composable plugin
systems (e.g. NPSNET-V [CMBZ00]), though such systems
have not been widely deployed. A plugin system is currently
considered to be a mid-term need for Yther, however, Yther

(© The Eurographics Association 2015.

A. Steed / Yther 153

is based on a mature and extensive game engine, so a lot of
content will not need to access such a plugin system.

2.2. CVEs

CVEs are an increasingly important application of virtual
reality systems. The potential requirements for CVE soft-
ware are very broad [OJP*09]. Two reference books give an
overview of the field [SZ99], [SO09].

Yther is not currently targeting the development of a stan-
dard large scale CVE in the short-term but it is a basis for
investigation of such systems. It uses a notion of individual
regions (Zones) that are not laid out in a unified coordinate
system, but are linked together. Perhaps the first system to
use this approach was DiamondPark [BWA96].

CVE platforms do commonly solve a related systems is-
sue: distribution of code and behaviour descriptions to lo-
cal clients in order that certain reactions (e.g. physics and
direct manipulation of objects) can be simulated at the ren-
dering rate and at low latency. Thus many CVEs split be-
haviour execution responsibilities between a server and a
client. For game engines, a typical strategy is frequent patch-
ing of the game client to make sure behaviours are up to date.
An alternative is to distribute code within scene descrip-
tions. A variety of options have been explored for this: DIVE
[FS98] shared TCL code snippets that used a message-
passing mechanism to share state; Ygdrasil [PADDO03] used
a scene description language to instantiate classes described
by plugins.

In the current prototype, Yther does not propose a com-
mon infrastructure for CVEs, but a CVE is one application
of Yther.

2.3. Unity

Unity [Unil5a] is a modern game engine that is very popular
with small and medium-sized developers. This attention has
been spurred by the availability of a package for Unity that
supports the Oculus Rift [OculS5].

Unity provides an integrated development environment
(IDE) that combines scene editing and scripting. The de-
veloper can export a run-time package for one of several
platforms, including Windows, Mac OSX, Android, iOS,
Google Native Client, PS4 and XBox One.

We will describe only a few key features of Unity that
are important for later discussion. The developer works on a
project that has one or more scenes. Unity eventually outputs
executable code along with content packages. Each scene
is described as a scene-graph comprised of nodes that rep-
resent the visual and audio representation, as well as be-
haviour. Behaviors can be scripted in UnityScript (a minor
variant of JavaScript), C# and Boo. Behaviors can access a
run-time API for the main engine and modify other nodes in

(© The Eurographics Association 2015.

the scene. Native code can be incorporated through a plugin
interface. Through the run-time API and standard language
features and plugins, behaviours can include interacting with
network services. Aside from the run-time API, Unity pro-
vides an API for scripts to alter the scene editor component
of the IDE. Under the hood, Unity manages its code using
Microsoft .Net assemblies. It uses the Mono framework to
support .Net functionality on some non-Microsoft platforms.
On platforms that do not allow dynamically loaded code, in-
cluding iOS, Unity reverts to static compilation. Thus at the
current time, Yther would not be able load new scripts on
i0S and we have not investigated this platform. The lack of
dynamically-loaded code is an Apple policy, not a limitation
of Unity, and thus any similar effort would also suffer the
same problems.

3. Architecture

The over-arching goal of Yther is to facilitate the sharing of
virtual reality content between developers and users. Yther
is built upon the Unity system, which has gained a broad
use in the virtual reality community. However, even within
Unity, we have personally found it hard to share content
between different virtual reality systems. Unity’s develope-
ment model comes from the game development community.
It targets the generation of an executable and a package of
content that can be distributed via physical media, or online.
However, the current default model of development is that
if the developer wants to support a particular piece of hard-
ware, say a HMD, they download a plugin or package of
content that supports that HMD. Then they include certain
assets and code within their scenes and build an executable
and package that supports that hardware. If multiple devices
(e.g. aHMD and a 3D input device) are to be supported, then
the plugins and packages for both are included. Unity pro-
vides mechanisms to facilitate sharing of content between
scenes during production, but supporting various hardware
generally means compiling different executables.

This model can be contrasted with the general model of
the web, where the user has a standard web browser that they
use for most of their interactions with the web, with the pos-
sible exception of some websites or web services, that by
accident or design only work in certain browsers. This in-
teroperability between browsers is facilitated by content and
scripting standards, such as HTML and JavaScript, though
these standards are slowly changing.

3.1. Zone and Deck

Yther’s first architectural design decision is to make an anal-
ogy to the web, by defining a Deck! analogous to a browser,
and a Zone analogous to a page. A user will usually use one

T The term ’Deck’ is borrowed from William Gibson’s Neuro-
mancer novel and its sequels.

154 A. Steed / Yther

Unity, Yther Package &

Deck Developer

Device Plugin

1
Deck
Installer
Website or °

App Store a

Unity & Yther
Package

6 Zone Developer
4

e Internet

Figure 1: The interaction between Yther User, Deck Developer and Zone Developer

Deck for each hardware configuration that they have. Each
Deck should be able to load all the Zones. Zones are stored
on content services on the web, and users download Zones
to the Deck in much the same way that browsers download
pages. Zones can link to each other.

A similar distinction can be found, say, the analogy be-
tween an X3D browser (e.g. a browser with a suitable plu-
gin) and X3D content, or between a Second Life browser and
an island in Second Life. However, one current intention of
Yther is to allow experimentation with the implementation
of Decks very easy: this is because consumer hardware is
changing quickly, but also, it is easy to foresee that there
will be a lot of innovation around input devices in the short
to medium term. Thus there will need to be flexibility to re-
program Decks.

Thus the second main decision is to base Yther on Unity,
with the intention that both Decks and Zones are constructed
within Unity. That is, the executable process that is the Deck
is programmed in Unity using whatever plugins, packages
and scripts are necessary to interface to the hardware; but
also Zones are packages of content that can be loaded by a
Deck. Thus the standard Unity process of compiling a set of
scenes into a single executable and packages of content that
can be distributed, is split into two parts that might be done
by two different programmers: compiling an executable (the
Deck) and producing packages of content (Zones).

We thus distinguish two categories of developers, both of
whom are Unity users: Deck Developer and Zone Developer.
It is intended that Zone development be relatively easy be-
cause a Zone Developer is mostly concerned with visual as-
sets and object behaviours, rather than dealing with specifics
of input. In making the separation though, we must identify

how the Deck and Zone communicate. This is where a set of
conventions and constraints are imposed. These conventions
and constraints will be the subject of Section 4, but critically,
because we are using Unity to program the Deck, the devel-
opers of a Zone can rely, either directly or indirectly, on the
Unity frameworks that are provided such as the various APIs
at compile time and the associated run-time facilities. For ex-
ample, physics interaction will be provided by the standard
Unity frameworks. On this we provide abstractions for rep-
resenting the user and a publish-subscribe mechanism that
means that scripts in the Zone do not need to be bound to
their callers at a compile stage.

A Zone can be packaged within Unity and hosted on the
web. Zones can be linked together by Portals that trigger the
loading of new Zones.

Figure 1 gives a summary diagram of the interactions be-
tween the Yther User, Deck and Zone Developer, which can
be described as follows:

1. Deck Developer using the Yther Package and packages
for other hardware specific support within Unity, pub-
lishes an installer for a Deck, onto a website, or some
app store.

2. Zone Developer using the Yther Package within Unity
publishes a Zone on to the web.

3. Yther User selects and installs a Deck for the hardware
that they have.

4. Yther User uses their Deck to fetch and browser a Zone.

5. Yther User can follow links through Portals to other
Zones.

(© The Eurographics Association 2015.

A. Steed / Yther 155

3.2. Vehicle and Avatar

To facilitate inter-operability of content, Yther attempts to
decouple world behaviour from interface description. A key
part of this is to define a standard avatar skeleton that the user
controls. However, this control may be direct or indirect, and
the avatar may or may not be rendered. The key role for the
avatar is to represent, to the world, the user’s presence and
behaviour. Thus a representation of the user is available for
behaviours to respond to. A more complete discussion of the
issues in building avatar can be found in Section 4.4. This
representation might be controlled by a mouse, gesture in-
terface or motion-capture system.

This avatar may or may not be visible. With Yther’s hav-
ing been developed initially for sharing research demon-
strations, self-representation is a key issue in virtual reality,
with self-avatars being difficult to control accurately. Thus a
self-representation for a 1% person system is a complex be-
haviour. Despite the availability of standard skeleton avatars,
our experience is that these can be difficult to rig for immer-
sive use and inevitably require some tweaking (e.g. to set oft-
sets for trackers, correct joint placement, etc.). Thus, for the
moment, we leave self-representation as a role of the Deck
until an appropriate standard for rigging avatars emerges. It
may be that this becomes a common part of a module hier-
archy to build Decks.

3.3. Unity Support

Yther includes a Unity package that provides assets for stan-
dard purposes (e.g. Portals as described above, and also
DeckMaster see Section 4) as well as editor scripts to sup-
port publishing and management of content. This allows a
developer to create a Zone. To support the creation of new
Decks, various different example Decks are provided, see
Section 5.

4. Decoupling Zone and Deck

As discussed in Section 3 Yther attempts to decouple de-
scription of the browser (Deck) from the virtual world
(Zone). Unity is thus used to develop Decks and separately
Unity is used to program Zones. The explicit goal is that
whoever develops a Zone need not design for specific hard-
ware. The developer will probably have access to several
Decks, but they will only need to test the content on one.

If we consider the running instance of a Deck that has
loaded a Zone, from a Unity run-time point of view, there
will be a scene-graph containing two sub-graphs. The first
sub-graph is that was constructed and loaded by the Deck at
initialization. This will include scripts and plugins that de-
scribe the main hardware interfaces for the Deck including
camera views, devices interfaces, any heads-up-display re-
quired, etc.. The second sub-graph represents the Zone. One
sub-graph will be loaded and unloaded (the Zone) when the

(© The Eurographics Association 2015.

user moves between Zones, but the other sub-graph will re-
main. In the following sub-sections we outline how the Deck
and Zone interact to effect behaviours.

4.1. Surface-Based Interaction

The first observation is that by combining objects in two sub-
graphs, implicit interactions would happen anyway in Unity:
visually the objects would appear to interact and, more
importantly, collision detection will occur. A behaviour in
the Zone might anyway simply use searching through the
scene graph by name, scene-graph path, component type or
tag. Additionally geometric queries such as ray casting and
bounding volume collisions would work. There are certain
considerations that the programmer might need to be aware
of (e.g. the Zone might not be a specific numbered child of
the scene), but such issues should be easy to detect and warn
about at the production stage.

We have called these types of interactions “surface-based
interactions”. This name is inspired by the scene-graph-as-
bus experiment, where an abstract scene graph was used
as the communication between two heterogeneous 3D ap-
plications [ZHC*00]. One application was able to interact
with the other simply by finding appropriate surfaces in the
shared scene graph. Surface-based interaction is sufficient
for many behaviours within Zones (i.e. behaviours that are
triggered and cause in-Zone behaviour such as autonomous
object movement).

4.2. DeckMaster

The Zone will need to call functionality on the Deck. For ex-
ample, triggering the loading of a new Zone. This can easily
be achieved by having a singleton object DeckMaster that
can be found by name or type. All scripts in the Zone can
discover this; the Unity package provides a function to iden-
tify the DeckMaster that any script can use.

4.3. Message Passing

The Deck will need to be able to activate functionality on
nodes in the Zone. This binding needs to be done at run-
time and thus there needs to be a way of discovering neces-
sary relationships between objects. There are various ways
of achieving this. In the current version of Yther we have
opted for a lightweight publish-subscribe message passing
system. This allows a script to register a callback based on
certain types of event. Unity already provides callbacks, e.g.
for collision events or key events, so the programming model
should be familiar to developers.

Unlike the built-in Unity message-passing system, our
callback interface declares the originator of the message, so
that certain user interface functionality can be created by the
object (e.g. creating a visual representation of a grab action,

156 A. Steed / Yther

by a visual tether between object and the hand, or other body
part, that grabbed the object).

The mechanism is partly based on analysis of previ-
ous message-based systems, for example the DIVE system
[FS98] or Distributed Inventor [HSFP99]. In the current ver-
sion we have supported the following types of generic events
that map to high-level interaction events: Grasp, Drop, Se-
lect, Deselect, Travel and Stop.

Each message type passes a success or fail as well as the
source object. This would allow subsequent behaviours of
nodes in the Zone to react to these events by, for example,
changing their behaviour, applying constraints, highlighting,
etc. Scripts can register for all events of a certain type, or
only events that apply to a specific object.

A Deck is required to generate these messages and ef-
fect the associated interaction techniques. Both grasp and se-
lect are provided as grasp should be used to model grabbing
and manipulation of objects, while select should be used to
model touch without the intention to manipulate. It is up to
the Deck how specifically to implement these. Similarly the
Deck should provide a travel technique that respects col-
lision volumes present in the Zone. The associated Travel
and Stop events are used as hints to functionality that the
Zone provides, such as audio effects. For complex effects
(e.g. footsteps), the Zone might need closer observation of
the avatar, but we consider that this already feasible under
the surface-based interaction, if the script observes the avatar
objects (see below).

We would note that arguably the feedback that might be
generated on interactions should be generated by the Deck
as the normal functioning of its interaction techniques. How-
ever, it is not clear how the negotiation of this might happen:
Zones might have different visual styles, where certain inter-
action feedback might be inappropriate. The negotiation of
this, and hints from the Zone to the Deck about what styles
of feedback are allowed, is future work.

4.4. Avatar

The Deck provides an avatar in the scene. In the current
prototype, it is not required that this include a visual rep-
resentation. There should be a series of nodes that represent
the positions of various limbs and end-effectors. These are
primarily provided so that objects in the Zone can discover
them, and thus interact with them. When the Deck effects
certain interaction techniques, it sends the message with the
avatar limb that is responsible (e.g. left hand, right hand,
etc.). This allows feedback to be generated appropriately.
Having a head node, nodes for the eyes and ears, etc. allows
for other common scene behaviours such as avatar gaze at
the user, sound effects that can be positioned to the sides of
the users, etc.

The following nodes are required: head, left eye, right eye,

pelvis, left foot, right foot, left hand, right hand, ground cen-
ter (below the pelvis). The Yther website gives a detailed
specification.

4.5. AirLock

Each Deck provides the core functionality for interacting
with Zones. As noted, the Deck provides mechanisms for
travel, object selection and object manipulation. Each Deck
is free to implement these however they wish; see the exam-
ples in Section 5.1.

Each Deck will need to load a Zone on initialization. Our
current examples load a test Zone that we have called an
AirLock. The Airlock serves two purposes. First it provides a
test ground for all the interaction techniques. If the Deck can
operate the behaviours in the Airlock, then it should work on
other Zones. The Airlock thus serves as a simple test for new
Decks; the content for a standard Airlock is including in the
Unity package.

5. Example Decks and Zones
5.1. Decks

Four Decks have been developed to test the examples. The
version of Unity used was 5.0.3. The first is a Desktop client
that is designed to be used with just a mouse for travel, se-
lection and manipulation. This uses an on-screen widget to
effect travel and mouse clicks to select and drag/manipulate
objects.. The second is based on the Oculus Rift DK1 and
DK2. This uses the standard Oculus SDK for Unity. Se-
lection and manipulation is done by ray selection from the
forehead. The third is a variant of the second that uses a
VRPN server [Unil5b] to connect to a Polhemus Fastrak
tracker. The Polhemus tracker provides hand tracking. Se-
lection and manipulation is done by casting a ray from the
hand. The MiddleVR software is used to connect to the
VRPN server [i’'m15]. The fourth is developed for a spe-
cific CAVE-like display. This system has three walls and a
floor. The four projectors are driven by a custom-built high-
end PC with an NVidia K5000 card. Tracking is provided by
an Intersense IS-900 system, that is supported by a VRPN
server [Unil5b]. The Middle VR software is again used to in-
terface to the VRPN server, and also to set up camera views
with stereo rendering. Example views from these Decks are
shown in Figure 2. All are shown running a Virtual Pit Zone.

5.2. Zones

As discussed in Section 4.5, the purpose of an AirLock is to
be the default zone on loading a Deck. One simple example
is shown in Figure 3, Top Left, where the AirLock is actu-
ally a model of the lab where one of the HMD systems is
installed. Thus the idea is that the person sees the same en-
vironment when they don the HMD. This AirLock contains
a table with two objects: one object spins when selected, the

(© The Eurographics Association 2015.

A. Steed / Yther 157

Figure 2: A Virtual Pit loaded on three different Decks. Top:
screenshot of desktop client. Middle: screenshot of HMD
client. Bottom: view of user inside the CAVE.

other one changes color while it is being moved. This, and
the ability to travel about the space act as a very simple test
of the Deck. The door is a Portal to a hub Zone.

A simple example hub Zone is shown in Figure 3, Top
Right. This model is based on a free model of Stonehenge
downloaded from 3D Warehouse [Tril5]. Certain of the
stone arches are Portals to other environments. For this hub,
some of the Zones include the Virtual Pit shown in Figure 2,
an experiment using an self-avatar, Figure 3 Bottom Left,
and an “escape the room”-style puzzle which was done as
student coursework Figure 3, Bottom Right.

Figure 3: Further example Zones.

(© The Eurographics Association 2015.

6. Limitations and Discussion
6.1. Short-Term Development

Yther is based on a simple set of abstractions and conven-
tions. Because the Unity environment is so powerful, with
lots of existing content and many strategies for implementa-
tion, the main current risk is that it will be perceived as being
too hard, or too limiting to follow the Yther conventions. We
hope to combat this by porting, and encouraging porting of
more complex demonstrations.

6.2. Zones

Currently we have a Zones and Portals abstraction to support
large worlds. Portals are only an abstract concept and are
not necessarily visible or door-shaped. Thus while they are
a flexible mechanism the model is that the whole Zone is
loaded before being inserted into the scene. Thus to support
very large models, a fully streaming model may be needed.

6.3. Plugins

Virtual environment software is a very broad domain. Yther
was not designed with the requirements of application do-
mains such as scientific visualization or application require-
ments such as real-time video texturing. While these might
be addressed purely through scripting, some sort of native
code extension is inevitable. While it may be possible in the
future for Yther to provide for a Zone to load native code,
what would be more useful is a standard framework for plu-
gin code extension.

7. Conclusions

The initial aim of Yther was to facilitate content sharing be-
tween different virtual reality systems without having to re-
sort to recompiling demonstrations. While our own lab had
tried to standardize on various APIs and frameworks to sup-
port all the equipment, the key stumbling block was nor-
mally that the tools to create content were not very sophis-
ticated or did not support a wide range of users. The design
of Yther thus started from a well-supported development en-
vironment with a large user community (Unity) and asked
what was the minimal imposition of additional framework
and constraints that could achieve this aim. The notions and
implementation of Deck and Zone are flexible enough to
support content sharing amongst a variety of platforms as
shown in Section 5. In principle a much broader set is sup-
portable by having developers build their own Decks.

Yther is an experiment. The components will be made
open source so that others in community can develop and
contribute. However the challenge is to design a more flexi-
ble platform or to evolve Yther into something that can ful-
fill the requirements of a broader set of virtual reality de-
velopers. Our main concern in developing the platform was

158 A. Steed / Yther

in sharing content between different systems within a lab-
oratory, but the main use of Yther in the short term might
well be games developers. Future analysis may indicate that
Unity was not the right platform, though it has many posi-
tive properties. There are risks that Unity will change dra-
matically, invalidating previous content, or that the Deck
paradigm provides too many constraints on developers of
Zones. However, we believe that this is a useful debate to
continue through exploring novel system designs.

References

[BDR04] BEHR J., DAHNE P., ROTH M.: Utilizing x3d for im-
mersive environments. In Proceedings of the Ninth International
Conference on 3D Web Technology (New York, NY, USA, 2004),
Web3D *04, ACM, pp. 71-78. 2

[BEJZ09] BEHR J., ESCHLER P., JUNG Y., ZOLLNER M.:
X3dom: a dom-based html5/x3d integration model. In Proceed-
ings of the 14th International Conference on 3D Web Technology
(2009), ACM, pp. 127-135. 2

[BJH*01] BIERBAUM A., JUST C., HARTLING P., MEINERT K.,
BAKER A., CRUZ-NEIRA C.: Vr juggler: A virtual platform for
virtual reality application development. In Virtual Reality, 2001.
Proceedings. IEEE (2001), IEEE, pp. 89-96. 2

[BWA96] BARRUS J., WATERS R., ANDERSON D.: Locales and
beacons: efficient and precise support for large multi-user virtual
environments. In Virtual Reality Annual International Sympo-
sium, 1996., Proceedings of the IEEE 1996 (Mar 1996), pp. 204—
213,268. 3

[CMBZ00] CApPPS M., MCGREGOR D., BRUTZMAN D., ZYDA
M.: Npsnet-v. a new beginning for dynamically extensible virtual
environments. Computer Graphics and Applications, IEEE 20, 5
(2000), 12-15. 2

[CSW09] CRAIG A. B., SHERMAN W. R., WILL J. D.: Develop-
ing virtual reality applications: Foundations of effective design.
Morgan Kaufmann, 2009. 2

[FMJ*05] FIGUEROA P., MEDINA O., JIMENEZ R., MARTINEZ
J., ALBARRACIN C.: Extensions for interactivity and retargeting
in x3d. In Proceedings of the Tenth International Conference on
3D Web Technology (New York, NY, USA, 2005), Web3D °05,
ACM, pp. 103-110. 2

[Fral5] FRAUNHOFER IGD: Instant reality release 2.4.0. http:
//www.instantreality.org/, 2015 (accessed July 1,
2015). 2

[FS98] FRECON E., STENIUS M.: Dive: A scaleable network ar-
chitecture for distributed virtual environments. Distributed Sys-
tems Engineering 5,3 (1998),91. 2,3,6

[HSFP99] HESINA G., SCHMALSTIEG D., FURHMANN A.,
PURGATHOFER W.: Distributed open inventor: a practical ap-
proach to distributed 3d graphics. In Proceedings of the ACM
symposium on Virtual reality software and technology (1999),
ACM, pp. 74-81. 6

[’'m15] UM IN VR: Middlevr. http://www.imin-vr.com/
middlevr/, 2015 (accessed July 1, 2015). 6

[KASKO2] KELSO J., ARSENAULT L., SATTERFIELD S., KRIZ
R.: Diverse: a framework for building extensible and reconfig-
urable device independent virtual environments. In Virtual Real-
ity, 2002. Proceedings. IEEE (2002), pp. 183-190. 2

[Khr15a] KHRONOS GROUP: Collada. https://collada.
org/, 2015 (accessed July 1, 2015). 2

[Khr15b] KHRONOS GROUP: gITF. https://github.com/
KhronosGroup/glTF, 2015 (accessed July 1, 2015). 2

[McC15] MCCRAE J.: Janus vr. http://www.dgp.
toronto.edu/~mccrae/projects/firebox/site.
html, 2015 (accessed July 1, 2015). 2

[Netl5] NETEASE, INC.: Unitysocketio. https://github.
com/NetEase/UnitySocketIO, 2015 (accessed July 1,
2015).

[Ocul5] OcuLus VR INC.: Oculus sdk v0.4.2 beta unity integra-
tion. https://developer.oculusvr.com/?action=
dl, 2015 (accessed July 1, 2015). 3

[OJP*09] OLIVEIRA M., JORDAN J., PEREIRA J., JORGE J.,
STEED A.: Analysis domain model for shared virtual environ-
ments. The International Journal of Virtual Reality 8, 4 (2009),
1-30. 3

[Opel5] OPEN WONDERLAND FOUNDATION: Open wonder-
land. http://openwonderland.org/, 2015 (accessed
July 1, 2015). 2

[OSV15] OSVR: Open source virtual reality. http://osvr.
com/software.html, 2015 (accessed July 1, 2015). 2

[PADDO3] PAPED., ANSTEY J., DOLINSKY M., DAMBIK E. J.:
Ygdrasil - a framework for composing shared virtual worlds. Fu-
ture Generation Computer Systems 19, 6 (2003), 1041-1049. 3

[SKR*10] Sons K., KLEIN F., RUBINSTEIN D., BYELOZY-
OROV S., SLUSALLEK P.: Xml3d: interactive 3d graphics for
the web. In Proceedings of the 15th International Conference on
Web 3D Technology (2010), ACM, pp. 175-184. 2

[SO09] STEED A., OLIVEIRA M. F.: Networked Graphics:
Building Networked Games and Virtual Environments. Elsevier,
2009. 3

[Sow00] SOWIZRAL H.: Scene graphs in the new millennium.
Computer Graphics and Applications, IEEE 20, 1 (2000), 56-57.
2

[SZ99] SINGHAL S., ZYDA M.: Networked Virtual Environ-
ments: Design and Implementation. ACM Press/Addison-Wesley
Publishing Co., New York, NY, USA, 1999. 3

[Tril5] TRIMBLE NAVIATION LTD.: 3d warehouse. https:
//3dwarehouse.sketchup.com/, 2015 (accessed July 1,
2015). 7

[Unil5a] UNITY TECHNOLOGIES: Unity. http://unity3d.
com/, 2015 (accessed July 1, 2015). 3

[Unil5b] UNIVERSITY OF NORTH CAROLINA AT CHAPEL
HILL: Virtual reality peripheral network. http://www.cs.
unc.edu/Research/vrpn/, 2015 (accessed July 1, 2015).
2,6

[Web15] WEB3D CONSORTIUM: X3d architec-
ture and base components V3.3, isofiec is 19775-
1:2013. http://www.web3d.org/content/

x3d-v33-abstract-specification, 2013 (accessed
July 1, 2015). 2

[Worl5] WORLD Viz: Vizard virtual reality software toolkit.
http://www.worldviz.com/products/vizard, 2015
(accessed July 1, 2015). 2

[ZHC*00] ZELEZNIK B., HOLDEN L., CAPPS M., ABRAMS H.,
MILLER T.: Scene-graph-as-bus: Collaboration between hetero-
geneous stand-alone 3-d graphical applications. In Computer
Graphics Forum (2000), vol. 19, Wiley Online Library, pp. 91—
98.5

(© The Eurographics Association 2015.

http://www.instantreality.org/
http://www.instantreality.org/
http://www.imin-vr.com/middlevr/
http://www.imin-vr.com/middlevr/
https://collada.org/
https://collada.org/
https://github.com/KhronosGroup/glTF
https://github.com/KhronosGroup/glTF
http://www.dgp.toronto.edu/~mccrae/projects/firebox/site.html
http://www.dgp.toronto.edu/~mccrae/projects/firebox/site.html
http://www.dgp.toronto.edu/~mccrae/projects/firebox/site.html
https://github.com/NetEase/UnitySocketIO
https://github.com/NetEase/UnitySocketIO
https://developer.oculusvr.com/?action=dl
https://developer.oculusvr.com/?action=dl
http://openwonderland.org/
http://osvr.com/software.html
http://osvr.com/software.html
https://3dwarehouse.sketchup.com/
https://3dwarehouse.sketchup.com/
http://unity3d.com/
http://unity3d.com/
http://www.cs.unc.edu/Research/vrpn/
http://www.cs.unc.edu/Research/vrpn/
http://www.web3d.org/content/x3d-v33-abstract-specification
http://www.web3d.org/content/x3d-v33-abstract-specification
http://www.worldviz.com/products/vizard

