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HDR Imaging
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HDR Imaging
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HDR Imaging

Merged Exposures



The HDR Pipeline



/ =
T — |

|
[ |

3.9e+03

6.7e+02

1.1e+02

2.0e+01
ux

CAPTURE STORING

DISPLAY



HDR Imaging: Merging
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HDR Imaging:
Acquisition



HDR Imaging: Merging

o To merge IV images, 4, , at different exposure times, f;, we sum

them up taking into account that they were taken at different
shutter speed:

szvzl W(Zk(laj)) ) g(Zk(laj)) ' tk_l
>V W(Z (i, )

* Where g = f‘1 s the Inverse camera response function, and w
S a welghting function. Typically, the merge is computed in the
0g-domain to reduce noise.

EG,)) =




HDR Imaging: Merging
e The result E(7,7) is a

e Note £ is the irradiance symbol: the radiance symbol is L

e [ecnnically speaking we should taking into account that:

0
. .nfd A
E(i,)) = L(Z’J)Z(?) Cos™ o

e But... Most lenses already compensate for this!




HDR Imaging: The Weighting Function

e [he welghting function selects
well-exposed pixels from the
Nput Image to avoid noisy ano
saturated pixels: 08/

e Such value increase noise or %
pias In the tfinal HDR image. 04

* FOr example:

W(x) — 1 o (zx - 1)12 00 510 160Pixe| Va|u1:)0 260 2510




HDR Imaging: Camera Response Function

o A Camera

Response

of Image Irradiance:

* [t S a solution for comr
dynamic range Into a-
PEG Image.

bit of a J

-unction (G

_%

H), £, is a non-linear function

oressing the irradiance values large
xed range of recordable values; 1.e., 8-

e RAW images (stored in 10-14 bits) have mostly a linear
penavior.

e [T S typically not known, but it can be estimated.



HDR Imaging: Camera Response Function

o EXploiting:

Z(i,)) = FIEG D) = f1(ZG.)) = EG ) — logf~' (2, ) = log EGi, ) + log 1,

o A typical estimation method Is based on optimization:

N 2
6= ) (log 8(Z,(i. /) — log E(i. j) — log rj-) +2) g'(x)?

k=1 i
e Where g(x) = F1(x).



HDR Imaging: Camera Response Function
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HDR Imaging: Camera Response Function
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HDR Videos

e [here are different strategies:

e Multiple sensors combined with beam spilitter capturing
frames at different exposures time |[locci+2011].

e \/arying the exposure shutter speed at each frame
Kang+2003].

e \/arying the exposure time in the bayer filter or assorted pixels
Yasuma+2010].



HDR Videos: Multiple Sensors

Stream 2 Stream 1

Stream 3

Video Courtesy of Jan Fréhlich - Stuttgart HDR Video Dataset



HDR Videos: Varying Exposure at Each Frame

Stream




HDR Videos: Assorted Pixels
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: Assorted Rows

HDR Videos

Video Courtesy of Jan Fréhlich - Stuttgart HDR Video Dataset



HDR Imaging:
Tone Mapping - SDR Visualization



Tone Mapping

A tone mapping operator (TMO) is a function, f( - ), that reduces the
dynamic range of a HDR image to fit into a SDR display. VWe have two main
classes:

* Global operators: it uses global statistics of the image to be tone
mapped:

e \Ve want to maintain the global contrast of the original image.

* Local operators: it uses both global and local statistics of the image to
be tone mapped:

e \Ve want to maintain both the local and global contrast of the original
mage.



Tone Mapping

e \ost operators work only on the luminance channel:

R R R
Gd — ' Gw — — Gw
L L
B, v |B, v | B,

e -Or the sRGB color space, this is defined as

L ,=02126-R, +0.7152-G, +0.0722 - B,

e [his Is to avoid color distortions when applying the curve on the three
Ccolor channels.




Tone Mapping: Global Operators
e A classic local TMO is the Reinhard operator |Reinhard+2002]:

L o=fL) = [ =21
d — W_l-l-Lm m_I/: W

W

e where ar is a user parameter, and Y is the geometric mean of
the luminance of the entire Image:



Tone Mapping: Global Operators Example

15.0e+00

3.1e-01

Luxl 9e-02

DR Image Reinhard with L, = 1



Tone Mapping: Global Operators Example

HDR Image Reinhard with I:W computea



Tone Mapping: Local Operators

e A classic local TMO is a variant of the Reinhard operator
Reinhard+2002]:

L = LG L,(,)) L =21 i
— l, — . m\lsJ) = < l,

’ ST 8(L,(1,])) P

e where g( - ) is a function computing the mean around the pixel
(1, 7). However, we need to avoid strong edges that may

create halos. So g( - ) has to be edge-aware; e.g., the bilateral
filter.



Tone Mapping: Local Operators Example

HDR |mage Reinhard without an
edge-preserving filter



Tone Mapping: Local Operators Example

HDR |mage Reinhard with an
edge-preserving filter



Color Distortions

e [Nhe problem with processing only the luminance Is that we
have the following problems:

o [, < L, the saturation of the pixel increases.

o L., > L, the saturation of the pixel decreases



Color Solutions

e \ain solutions:

Desaturate |R,,, G,,,, B,,]/L,, by applying a power function in

(0,17 [Schlick+1995].

Inear desaturation taking into account the TMO derivate

Mantiuk+2009|.

-lue reset ana saturation scale In the | Ch color space

Pouli+2013].



HDR Imaging:
Native Visualization - HDR Monitors




Native Visualization: LEDs HDR Monitors

LCD Panel



| ED-based HDR Monitors: PSF




| ED-based HDR Monitors: PSF




Native Visualization: HDR Monitors
-
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HDR Imaging:
Metrics



Image Quality Metrics: with Reference

o A probability map; each pixel has the probability of being detected when compared
to the reference by a viewer.

e ( predictor value in the range |0, 100]; the higher the better.

METRIC orobability Man

Distorted Image Quality value



Image Quality Metrics: No Reference

o A probability map; each pixel has the probability of being detected when compared
to the reference by a viewer.

e ( predictor value in the range |0, 100]; the higher the better.

; T EL N e

METRIC EPSTo—

Distorted Image

Quality value



Metrics for HDR Applications

e HD

R-V

D)

2 2.2/3.0.6/

D)

=M

e [hey are reliaple metrics for the general case:

°

D)

= vsS HDR: H

D)

R VS S

D)

=3 etc.

e Computational cost is demanding.

o TMQI and TQMI-II;

e | imited for comparing HDR vs SDR for tone mapping.



HDR Open Problems:
Acquisition



HDR Problems:
Merging Exposures in Dynamic Scenes
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HDR Problems:
Merging Exposures in Dynamic Scenes
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HDR Problems:
Merging Exposures in Dynamic Scenes

NNl
LN

N \\ |
'ﬁ\;s‘ glsx»

|
\
é’
|
JR T :
e N il
B\ |
1 '
i It:‘ ,“,
| /
3
N %
| | A
h ity H
f

¢ t"l),//:’"/ Ve s 1 3
/8 4 : A |\
A et A
V) B WV |
WA/ ) = 38
‘. 7i0 A, Rl o J -" H|Ve
A\ VS| §
1 L Y
) s\ 1 2.3e+04
\ { 118
i |8
V) | !
- S
) 7 = L1
o | 2
[ 32
' 3.9e+03
i £l
4
T » -

16.7e+02

1.1e+02

MERGE

2.0e+01
ux

Scene-referred HDR image

Stack of 8-bit images



HDR Problems:
Single-Image Acquisition / Inverse Tone Mapping
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HDR Open Problems:
Visualization



HDR Problems: Tone Mapping
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HDR Open Problems:
How to Measure the Performance?



How to Measure Performance?

e How do we convert large experiments Into metrics’

e Can we speed-up high guality but computationally expensive
metrics’?

e Can we have no-reference metric”






lo Recap

* |n this tutorial, we will address now to use Deep Learning
methods for:

e Acqulring mDR content;

o Display HDR Images and viaeos;

e \etrics for comparing HDR content.



Questions?
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Convolutional Neural Networks

Hiiter kermel

Convolution + activation Pooling Convolution + Activation

Outputs

Fully Connected



Pooling - Downsampling (e.g., max function)

.-.. 2x2 filter, stride 2

e Controlling overfitting

e Reducing the number of parameters

e NMemory footprint

e Reducing the number of computations




Activation Functions (layers) Categories - most used

Y

1. Ridge activation functions:
1.7 Linear
1.2 RellU

1.3 Logistic

2. Radial activation functions:
2.2 (Gaussian
o . 2.3 Multi-quadratics

0 2.3 Polynomials

ReLU(x) = max(0,a + x b)



Fully Convolutional Neural Networks

) T - N
4096
1024
384
3 64 64 64 64 64 64 64 64 3 25
96 21 3
FCN with only convolutional layers (with activation functions). FCN with convolutions (with activation functions),
Skip connections may be added to recover fine details. downsampling, pooling, and upsampling.

Skip connections may be added to recover fine details.



The U-Net
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(GGenerative Adversarial Networks (GANs

Real image

age
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GANSs: Backpropagation in the Discriminator

.- Real Data - positive sample

Generator does not train

- ' Generated mage \ Backpropagation

> Discriminator loss

2.3e+04

3.9e+03

Generator loss

Random Input - HDR image e e eeeeees 2
. Fake Data (negative sample)

Einstances Created by the generator?



GANSs: Backpropagation in the Generator

.- Real Data - positive sample
Real image

Discriminator 10ss

4 Generated Image -

» (Generator loss

2.3e+04

3.9e+03 \

4
6.7e+02 K
4

Backpropagation

Random Input - HDR image

. Fake Data (negative sample) .
mstances created by the generator:



GANSs: Loss Function - e.g., Minimax loss

Loan(G, D) = E [log D(y)| + E,[1 — log D(G(x))]

Discriminator loss (Generator loss

D(y) = discriminator estimated probability that the real data instance v is real

. = expected value over all the real y instances

G(X) = generator instance output value when given random input/input image x

D(G(x)) = discriminator estimated probability that a fake instance is real

¥ = expected value over all fake generated instances
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Introduction

e HDR reconstruction from multiple-
exXposures:

e [f we don't place the camera on
a stable tripod the camera
moves!

o [f we have wind or people, there
will be movement!

o All this means, we will have
artifacts!




Introduction: Camera Movement

e \What if we capture a stack of exposure images free-hand without a tripod’?




Camera Movement

Introduction
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Camera Movement

Introduction




Camera Movement
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Introduction: Camera Movement




Introduction: Camera Movement

o [vpically, If we have ONLY camera movement, we can
manage the merge:

e \\Ve have only a single global movement.

e [here are several robust algorithm to deal with such situations:
e Greg Ward's MTB method.

* [omaszewska and Mantiuk's momograpny algorithm.

e (Gallo’'s Multiple Homographies.



Introduction: Dynamic Scene

o \What If we capture a stack of exposure images on a tripod in a dynamic scene’
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. Dynamic Scene

Introduction
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Introduction: Dynamic Scene
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Introduction: Dynamic Scene
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Introduction: Dynamic Scene
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Introduction: Dynamic Scene
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Introduction: Camera Movement

o [ypically, If when the moving people/objects are small they can
pe fixed easilly.

e [here are several robust algorithm to deal with such situations:

e \asks: Pece and Katuz.
e Grandaocs et al.

e PatchMatch-pased: Sen et al./Hu et al.




Datasets




Capturing Data: Kalantari’s Data

0-stop

+2-stop

«t Dynamic Stack



Capturing Data: Kalantari’s Data

Video Courtesy of Jan Frohlich - Stuttgart HDR Video Dataset Dynam |C StaCk Stat|C StaCk



Capturing Data: Kalantari’s Data

Video Courtesy of Jan Frohlich - Stuttgart HDR Video Dataset Dynam |C StaCk Stat|C StaCk Tra| N | ng StaCk



Images

e For each SDR image [;, we know:

e The CRF, f( - ); i.e, we know its inverse g( - ) =f_1( ).
SO; - 1
K. A2

l

, | Ne exposure time 1, =

o 11: Shutter speed.

o A Aperture value

e SO, SO value.
e K € [30.6,13.4]: a constant depending on the camera.



Images

o Typically, we work with “calibrated” SDR image H;:

H, = 8y
f.

l

L
2.2

e N many works, the CRF is assumed to be f(x) = x

e [herefore, we have:



Images: Patches and Augmentations

o All methods are trained on patches of different size: 40 X 40,
256 X 256,512 x 512

* Patches may e create with or without overlap.

e \\/e have different augmentations:

e Rotation, Flips, etc.

e Swapping color channels [Kalantari et al. 2017]



Preprocessing

e [he problem can be "simplified” by using classic approacn for a
first alignment:

e Homography alignment introduced by Wu et al. 2018;
e Optical flow alignment introduced by Kalantar et al. 2017 .

e [Nis initial alignment reduces blur.

o [ypically, It matches the packgrouna well;

e | ocal mismatches are left.



HDR Image Datasets

Dataset Name #lmages #Resolution Calibrated Website

https://
cseweb.ucsd.edu/

Kalantari Dataset /4 1.5MPix Uncalibrated . .
~viscomp/projects/
SIG1/7HDR/
https://
Tursun Dataset 17 0.6Mpix Uncalibrated User.ceng.metu.edu.t

r/~akyuz/files/
eg2016/index.html



https://cseweb.ucsd.edu/~viscomp/projects/SIG17HDR/
https://user.ceng.metu.edu.tr/~akyuz/files/eg2016/index.html

HDR Video Datasets

Dataset #Videos |#Resolution| Length FPS Color Format Website
Name Space
- https://
Stuttgart oating www.hdm-
HDR Dataset 33 1920x1080 | 13s-100s 24/25 REC709 Point stuttgart.de/
vmlab/projects/
UBC HDR Floating http://
Video 10 2048%x1080 /s-10s 30 REC709 Point dml.ece.ubc.ca/
Dataset oin data/DML-HDR/
LIVE cl)-lDII:?tVideo 31 (310 at https://
all - : . I live.ece.utexas.edu/
Acsesament | different bit- | 0.32Mpix 3s-10s 50/60 BT2020 HDR10 | liccediexas.ccu
Database rates) LIVEHDR _index.html
MPI HDR _ https:// |
Video 2 0.3Mpix | 24s-34s 24 REC709 F'F‘,’a.t'rt‘g [esources.MpL:
Dataset omn "~ video/
EBU HDR https://
Video 10 3996x2160 10s-31s 50 BT2100 HLG tech.ebu.ch/
Dataset testsequences



https://www.hdm-stuttgart.de/vmlab/projects/hdr
http://dml.ece.ubc.ca/data/DML-HDR/
https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
https://resources.mpi-inf.mpg.de/hdr/video/
https://tech.ebu.ch/testsequences

End2End Architectures



Kalantari et al. 2017

o Kalantari et al. 2077 proposed a simple

solution:

e Optical Flow for the main alignment
petween exposures;

e An end?2end (a

layers except a sigmoic

—~CN) wi

tn

for the last layer:

SellU in all

e Convolution varies in kemel size from

arge to small:

e /X7 55 3%x3 andl x 1

100

100

50 No



Kalantari et al. 2017

o Kalantar et al. 20717 noted that the simple solution nave some
SSUES:

e [t |s difficult to train; we need a huge dataset!
e [t does not fix alignment artifacts.
* [Nne solution Is to use the network to:

e Compute Weights.

* Refine Images.



Kalantari et al. 2017

e \\Neight Estimator:

e [Ne shown architectureAis used to compute the per-pixel weights, a, to obtain the
estimated HDR image H:

Zi“i -

Ziai

H =

e Refined Images:
e [Ne network also refines the alignment obtaining new iImproved images ﬁi:
Zi a; - 1

Ziai

H =



Kalantari et al. 2017

NETWORK .

Video Courtesy of Jan Fréhlich - Stuttgart HDR Video Dataset



Encoder-Decoder - Wu et al. 2018

Video Courtesy of Jan Fréhlich - Stuttgart HDR Video Dataset



Attention HDR

e Yan et al, 2019 introduces two blocks:

o Attention Module:

* [he attention Is computed on low level features.

e [he attention Is applied to features of Images that are not the reference.

¢ Residual Dense
arger receptive t

Slocks [Zhang et al. 2018] with dilated convolutions 1o have a

eld.



Attention HDR

Reference

: Attention Module :
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Attention HDR
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Attention HDR

/ Dilated Convolutions
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ADNet

U et g

WO ImMa

2027, similarly to

N DIOCKS:

Pu et al. 2020, proposed for NT

— 2027 a network based on

o Attention computed using the reference, similar to Yan et al. 2019,

* Pyramid, Cascade and Deformable (

PCD) module by Wang et al. 2019:

e PCD Is applied at the feature level of the gamma-corrected images.

e [Nis Mmodule uses deformable convolutions

CLASSIC CONV DEFORMABLE CONV

OFFSET



ADNet - PCD
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CONCATENATION

UPSAMPLE
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DCONV




GAN Architectures



HDRGAN - Niu et al. 2021: Generator

L, L, L;




HDRGAN - Niu et al. 2021: Training

GENERATOR

DISCRIMINATOR Z Adversial




UPHDR-GAN - Li et al. 2022: Generator

INPUT IMAGES

d3dOON3

RESIDUAL
BLOCKS

d3dOON3

HDR IMAGE

m
<
O
O
O
m
By




UPHDR-GAN - Li et al. 2022: Training

GENERATED IMAGE BLUR IMAGE
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| 0ss Functions



Loss Function in the pu-Law Domain

o Kalantar et al. 2017 introduced a L2 loss function in a tone-mapped domain:
grec(la I) = ||z(I) — T(I)Hz

where 7( - ) is a differentiable tone mapping function based on the p-law:

log(1 + ul
T(]):M 1 = 5000

log(1 + u)

o Note that there are variants of £~ Where we have L1 instead of L2.

e [Nis |loss function Is N Most HDR works tor reconstruction ano
nverse tone mapping.




GAN Loss

e QOur goal Is:

arg min max £ (G, D)
G D

e Typically a GAN |oss is defined as:
Z(G,D) = 0, ZcaN(G, D) + 0, Zo(G)
where:

o« ZoaN(G, D) is the adversial loss.
o 7 oc(G) is the content/reconstruction loss.

e ; and a, are weights for balancing the two losses.



GAN Loss: HDRGAN

e Niu et al. 2021 has a GAN scheme with a content/reconstruction 10ss:

PLroc = ngn(uf(ﬁo — H||, + ||7(H,) — ﬁm)

e And a GAN loss based on the sphere generative adverbial loss |Park and Kwon 2019,
where the Discriminator output an n-dimensional vector  which is projected on

peS”

Lean = minmax ) E[d/(N,D@)] — ) Ey o d/(N,D(G(X;, X, X3))]
G D

r r

where d (p, p’) is the distance on the hypersphere, and N = [0,...,0,1] € R"



GAN Loss: UPHDR-GAN

o | et al. 2022 has a GAN scheme with a content/
reconstruction l0ss:

Froo=Ep, [“VGG(G(X)) - VGG(xQ)”l]

e [he GAN |oss Is defined as:

ZoAN =

_Y"’Pdata(”[l()g D(y)] +

e ol1og 1 = DIGON] +

e 10€(1 = D(O))]




Loss Function in the pu-Law Domain
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HDR Videos: Temporally Varying Exposure Time

Stream

Video Courtesy of Jan Fréhlich - Stuttgart HDR Video Dataset



Video Strategies: Kalantari and Ramamoorthi 2019

e A b-scale pyramid for computing a multi-scale optical flow
using a CNN for each scale a simple FCN:

OPTICAL FLOW

——

RESIDUAL OPTICAL FLOW

——_—




Video Strategies: Kalantari and Ramamoorthi 2019

e Similar to the previous work by Kalantari et al. 2017, there Is a
merger (encoder-decoder).

e [0 enforce temporal coherency and reduce artifacts the
merger uses neighoors frames at previous and next time.




l

l

+1

+2

Strategies: Chen et al. 2021

Flow-network
_|_
Warping

Features
Extrctor

Features
Extrctor

Features
Extrctor




Video Strategies: Chen et al. 2021

Features
Extractor

Features Deformable

Extarctor Al ign ment
Multi-scale

Features Deformable Convolutions

Extractor HDR Frame at time i-th



Evaluation



Metrics

e \any WOorks Uses:
e | Inear domain PSNR and SSIM.

e 1-law or Reinhard et al. 2002's TMO PSNR or SSIM

* [hese approaches have many ISsues:

e | inear domain PSNR and SSIM are prone to outliers.

e 1-law and Reinhard et al. 2002's TMO are empirical approaches that
do not model the Human Visual System.

* [hey may Introduce distortions.



Metrics
e PSNR and SSIM should be computed using the PU21 .

e PU2T encodes absolute HDR linear value into approximately perceptually
Uniform (PU) values.

e HDR-VDP 2.2, HDR-VDP 3.0.6, and FovVideoVDF,

e Deghosting artifacts: Tursun et al. 207106.

e Note that may HDR reterence images and output iImages are

e [T we do not have calibration gdata;

o Display-reterred values.



Limitations



Limitations

e The C

_%

- needs to be known (a partial lImitation):;

e \ost methods are limited to merge ONLY three images:

* [here is not method addressing an arbitrary number of
mages or more than tnrees.

e [he difference In 1-stop has to be fixed:

e [nere is N0 method that can merge an image at -o-stop, O-

stop, ana +1-stop



Other Problems in Reconstruction



Other Reconstruction Problems

e \/\le have other problems for HD
that can e solved using aeep lea

e Assorted pixe
2020, XU et a

e HDR reconstruction usi
al, 2022, Messikomme

:%

reconstruction with partial real information

ning:

s/rows [Chol et al. 2017, Cogolan et al. 2020, Suda et al.
2027, Vien et al. 2022].

e HDR from deep optics/masks |Alghamdi et al. 2019, Metzler et al. 2020)]

ng an event camera [Wang et al. 2019, Shaw et
retal. 2022).

e HDR reconstruction for quanta sensors [Gnanasambandam et al. 2020,
Gao et al. 2022].



Questions?



Questions?



Modern High Dynamic Range
Imaging at the Time of Deep
Learning

Francesco Banter le and Alessan dro Artusi



Introduction

e Acquisition is tedious:
e |mages alignment.

e (5hosts removal.

e \/\\hat can we do without
oracketing or modified/expensive
nardware’/




Introduction

e Acquisition is tedious:
e |mages alignment.

e (5hosts removal.

e \/\\hat can we do without
oracketing or modified/expensive
nardware’/




The Problem

—HDR
7 -- SDR

101;‘

Luminance cd/m 2

10'2;‘

1073 |

0 200 400 600 800
Pixels

Histogram of the red dotted line



The Problem
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The Full Pipeline

Dequantization Linearization Hallucination




The Full Pipeline

Dequantization Linearization Hallucination

8-bit unsigned




The Full Pipeline

Dequantization Linearization Hallucination

32-bit floating point




The Full Pipeline

Dequantization Linearization Hallucination




The Full Pipeline

Dequantization Linearization Hallucination




The Full Pipeline

Dequantization Linearization Hallucination




The Full Pipeline

Dequantization Linearization Hallucination




The Linearization Dilemma



The Linarization Dilemma

e One of the first step to decide Is how we linearize the input SDR.

e Many methods uses a standard y = 2 ory = 2.2.

e Hilertsen et al. 2017, Mamerides et al. 2018, etc.

e Note that many modern cameras encodes images using common CRF such as
sRGB, PQ, and HLG.




Architectures




Architectures

e Here, we have two possibilities t0 solve the problem:

e Approach 1: Given an input image, we generate directly a HDR image

2.6e+03
7 {? ;::)\
= 1.8e+02
11.2e+01
T 8.4e-01
LuxS 8e-02

SDR Image IDR Image



Architectures

e [NIsS approach may also compute a tone mapped ve

recover. If the tone mapper is invertible, we can obta

SDR Image Tone Mapped HDR Image

'SION O

" the radiance map to

N a rac

iance map.

2.6e+03

= 1.8e+02

1 1.2e+01

8.4e-01

5.8e-02
X

Lu

HDR Image



Architectures

e Another possibility Is:

e Approach 2: Given an input SDR image, we generate a stack of n SDR images at
different exposure times.

2.6e+03

1.8e+02

11.2e+01

8.4e-01

-2-stop -1-stop

Lux5 8e-02

SDR Image HDR Image



Which Architecture?

e [he bread and butter of most ITMO
are

e FCN.

, 2.6e+03
Ve ’;g«;—:i-&,::-.~; :
/ ,:"/{' g \Q}? -
" 1.8e+02
294
T RAAX N
% » 4'p

e U-Net [Ellertsen et al 2017].
e Residual Blocks [Kim et al. 2019]. . IggEela I
e [hey are simple models that generally

Input SDR Output HDR
WOTKS. End2End



Which Architecture?

e Activation tunction:

o | cakyRelLlU/GellU Iin the encoder part.

e RelU In the decoder part.

e [Nhe last layer:

* Sigmoid: tone mapped results or single exposures.



Which Architecture?

UP NETWORK

—Ndo et al. 2077 employs a
classic U-Net with a twist:

e Nncoder nas 2D
convolutions.

Input SDR Output Exposures

e Decoders has 3D
CONVOIUtIoNS:

DOWN NETWORK

e (Generate In a single
network all exposures.

e | IMmrtations: the number
Of exposures are
imited.

Input SDR Output Exposures



Which Architecture?

e Namerides et al. 2013
Droposed a multi-branch

architecture to overcome U-
Net Imits: v

e | ocal features:

e NMedium features:

i A \
e (Slobal teatures.

INPUT

OUTPUT
CONCATENATION

N
> N SN N\
N

A

'\
N\
A

N

GLOBAL BRANCH



Which Architecture?

ta and Kiya 2019
Dalred the global branch
J_
mitations of U-Net.

e KiNosn

\et to overcome som

WIth
O

IIIII

NNNNNNNNNNNNN

UUUUUU



Which Architecture”? Feature Masking

e Santos et al. 2020 introduces masking:

e \/\le can see inverse tone mapping as an inpainting problem, where our mask Is
defined using over-exposed pixels.

e

INPUT SDR MASK



Which Architecture? Feature Masking

e Santos et al. 2020 apply the mask at each convolution step:

-
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Which Architecture? Feature Masking

o | uetal 2020 has a network that recovers the inverse camera pipeline:

Dequantization Net Hallucination Net Refinement Net

2.6e+03
PN
1 1.8e+02
9,
AR N 11
¥ » A »%i

11.2e+01

- IR
¥ I 8 4¢-01
-5 5. 02

Linear SDR Image HDR Image

SDR Image

CRF Net

A
Over-exposed Mask
CRF
I >




Which Architecture? Frequencies Separation

e adopted a classic end2end encoding paired with a GAN, so nothing special right now... The

novelty:

e A network for each freguency:

e Base image or 1, is the output of filtering the input image, 1, filtered using an edge-aware filter:

o Bilateral Filter, Guided Filter, WLS, etc.

o Detailimage or /. is an image encoding the high-frequency details, and it is computed as:

e Capece et al. 2019 used a similar strategy for relighting faces.

e ASiM
WLS |

ar Work with more re

nement networks was proposed by Zhang and Aydin 2021 using

nstead of the bilatera

filter,



Which Architecture”? Frequencies Separation - Wang et al. 2019

Base Layer Reconstruction

' ;
U-Net

Detail Layer Reconstruction

! i
!
.

Merge Network

Input SDR

Output HDR




Which Architecture? Frequencies Separation - Zhang and Aydin 2021

Base Layer Reconstruction Refinement

WLS

Input SDR
Detail Layer Reconstruction

Broad Inpaint Fine Inpaint



Datasets




HDR Image Datasets

e Proper HDR images/videos ( > 18-stop) are scarce on the Internet.

e [here are few datasets of real HDR images.
e [hese datasets are typically uncalibratea:

e [NIS means that luminance values are relative; 1.e., they do not
have absolute values in cd/m?®

e Colors may not match the real colors.

e [hey are stored in different formats without the use of a standard.

vpically, using the Radiance (.hdr) or OpenkEXR (.exr) format files.




HDR Image Datasets

Dataset Name #lmages #Resolution Calibrated Website
HDR Survey 108 5MPix Scene-referred hitpumeridelctiid.org;
HDR Eye 47 2MPix (full-HD) Display-referred
Stanford HDR Dataset 88 0.32Mpix Scene-referred |t canc e iasing caiset o oz
Laval HDR Indoor 2100 2MPix (2:1 ratio) Relative values http://indoor.hdrdb.com/
Laval HDR Outdoor 205 2Mpix (2:1 ratio) Relative values http://outdoor.hdrdb.com/
Akyuz HDR Images 10 5MPix Relative values M ries oo oot sal
: : https://
Debevec HDR Images 2 0.3-2Mpix Relative values www.pauldebevec.com/
: https://resources.mpi-
MPI HDR Images 14 3MPix Scene-referred inf.mpg.de/hdr/gallery.html
: : : https://www.cs.huiji.ac.il/
Classic HDR Images 10 <1Mpix Relative values w~danix/hdr/results.html
Funt HDR Dataset 105 3Mpix Scene-referred hitpsi//WWWZ.Cs.51U.ca/

~colour/data/funt hdr/



http://markfairchild.org/HDR.html
https://qualinet.github.io/databases/image/high_dynamic_range_imaging_dataset_of_natural_scenes/
http://indoor.hdrdb.com/
http://outdoor.hdrdb.com/
https://user.ceng.metu.edu.tr/~akyuz/hdrdisp_eval/hdrdisp_project.html
https://www.pauldebevec.com/
https://resources.mpi-inf.mpg.de/hdr/gallery.html
https://www.cs.huji.ac.il/w~danix/hdr/results.html
https://www2.cs.sfu.ca/~colour/data/funt_hdr/

HDR Video Datasets

Dataset #Videos |#Resolution| Length FPS Color Format Website
Name Space
- https://
Stuttgart oating www.hdm-
HDR Dataset 33 1920x1080 | 13s-100s 24/25 REC709 Point stuttgart.de/
vmlab/projects/
UBC HDR Floating http://
Video 10 2048%x1080 /s-10s 30 REC709 Point dml.ece.ubc.ca/
Dataset oin data/DML-HDR/
LIVE cl)-lDII:?tVideo 31 (310 at https://
all - : . I live.ece.utexas.edu/
Acsesament | different bit- | 0.32Mpix 3s-10s 50/60 BT2020 HDR10 | liccediexas.ccu
Database rates) LIVEHDR _index.html
MPI HDR _ https:// |
Video 2 0.3Mpix | 24s-34s 24 REC709 F'F‘,’a.t'rt‘g [esources.MpL:
Dataset omn "~ video/
EBU HDR https://
Video 10 3996x2160 10s-31s 50 BT2100 HLG tech.ebu.ch/
Dataset testsequences



https://www.hdm-stuttgart.de/vmlab/projects/hdr
http://dml.ece.ubc.ca/data/DML-HDR/
https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
https://resources.mpi-inf.mpg.de/hdr/video/
https://tech.ebu.ch/testsequences

HDR Content Datasets

o Are these tables complete’?
e NO, they are not.

e [here are more datasets, but it can happen they may be not be
avallable for some time. For example:

e | |U HDR Video Dataset: high-quality dataset that is not currently
avallable on the web.

e MPEG HDR Video Dataset: not freely available.




Augmentation Strategies

e Classic flips and rotations;
e Cropping from high-resolution images;

e Channel swapping [Kalantari et al. 2017

e RGB channels are randomly swapped.




Creating Images for Training

e [he training dataset:

o <|nput SDR, Output HDR>

e How do we compute the input’?
Z = f(E - ot)
e Ot is the virtual exposure value.

e f(x) is the camera response function where the simplest to be used is:

flx) = x22



Creating Images for Training

e Many methods employs a random function from Grossberg and Nayar 2003 dataset of CREs:

e Filertsen et al. 2017 showed that meaningful CRF can be modeled as:

n

) =1 +06) — n~ 4(090.1) &~ 40.60.1)
X

"+o0

1_

O O
o) o

Normalized Brightness
o
™~

0.2

| | | | | | | | | J
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Input Irradiance



Creating Images for Training

e Ofis an important value to be picked up:

1/1

max]

o ltsrangeis [1/1_;

1n?
o Automatic exposure:

1
Ot =

41 mearn

e \We pick the of that maximizes the well-exposed pixels in the range [0.05,0.95]:

e \Ve do not want too dark images.



Creating Images for Training

e \/\le may perform a random augmentation:

1/1

max]

5t ~ [1/1

1n’
e |n this case, we need to skip extremely brignt and dark images:

e [hese are difficult cases.

e \/\le need a minimum of well-exposed pixels in order to draw something of
meaningful from our methods:

o 50-7/5% of well-exposed pixels:

e Half/Quarter of the image totally white or totally black.



Selecting Patches

—llertsen et al. 20717

e For each HDR, 10 patches are selected at 320 X 320 using random cropping.

e | ceetal uses random crops at 256 X 256

—-Ndo et al, 2017

e |mages are downsampled at 512 X 512.

Marnerides et al. 2018

e Random crop with Gaussian distribution (center image) at 384 X 384.

Santos et al. 2020:

e Selection of patches with texture: 1.e., mean gradient of the detail layer over 0.85 (bilateral separation).



Training



The Loss Function

e Hilertsen et al. 2017

e MSE in the log domain.

e \Ve have a loss function for the luminance and the reflectance component:

e Fqgual weight in the paper for both losses.
e Mamerides et al. 2013:

e | 1 + Cosine Loss (for colors In under-exposed areas):

gcos(i I) =1 — lz _ I(laj) ' 1(19]) |
12CE, DIl - G DI

N =
L]
where I is the reference image and I is the results of the network



The Loss Function

o Lee etal 2018 employs as content loss L, and classic GAN loss:

1 1
ZcaND) = ) = DG, x) = 1] + Y = L(D(G(, 2), 0)°]

Zcoa(G) = E, [(D(G(y,2),x) — 1)°]
Z(G) =E,, [y - Gk 2]

e \Wang et al. 2019, santos et al. 2020, Liu et al. 2020 uses a perceptual loss (VGG network) together
with Ly

Lo, 1) = |ly(D) —w()||,

e Liuetal 2020 has a complex loss where the main contribution is the reconstruction loss (L) TV loss
and a CRF loss (MSE)







What’s about

video?

e [here are many papers treating videos:

* [N many cases, these works on a single frame:

e [Nhere s No temporal conerence mechanisms in place:

e \Why are these considered videos methods”

e [hey use HDR10/HD
color space).

110+ video datasets with wide gamut (e.g.,

e They output directly PQ/HLG values.

e [hey work on YUV input values.

q

—C02020 or R

—C2100



What’s about video? Video Stablilization

e Cilertsen et al. 2019 showed how to make Imaging method temporal conerent;
colorization, inverse tone mapping etc.

e [he key Is the introduction of a new loss:
LU = LoD - (1 — ) + aZ oo, )
where a € [0.85,0.95]

e (Given that it Is difficult to have good video dataset, the idea is to approximate a

‘video movement” by a small Euclidian Transformation 1, which can be: a
translation, a rotation, and a scaling.




What’s about video?

e If our networkis f( - ) and its input I., we can define the regularization as:

greg(la j) — gr@g(laf(lm)) — (f(T(Im)) o T(I)> T (f(lm) T I)

2
The difference between The difference between
ground-truth and the ground-truth and the
network results after 7; network results.
o 7( - ) is arandom transformation: .e., the “next frame”

e Translation [—2,2]7 pixels:

e Rotation =1°;

e Scaling [0.97,1.03],



Evaluation



Evaluation

e \ain metrics recommended for evaluations are |

e [ We have a reference:

* HD

RV

D)

2 2.2, 1

D)

RV

D)

- 3.0.6, and

o [f we do not have a reterence:
PU-VS

e [0 focus evaluation on the generated content, we should remove

o PU21-

PIQE, ano

e).

U211 -

PONR.

Nfluence of the CRE. A possibility Is to estimate the C
eference (if availab

anji et al, 2022

_%

- using the



Future Directions



The Status

o Currently, 2-3 new methods appears every month on arXiv!

e Many works Just get old or new datasets and they train the
atest arcnitecture on them:

e Diffusion Networks:
* [ransformers:

* o[C.



Promising Approaches

e [he main limitations of doing HDR and especially inverse tone mapping I1s that
datasets are very small;

e [here are a small amount of iImages achieving 20-stops.

e [he few datasets may disappear due to maintenance!

e On the other hand there are large datasets available online of SDR image that
could be usead to copy well-exposed data In over-exposed areas:

e Banterle et al. 2021 unsupervised generation of HDR videos from SDR
VIOeos.

e \Wang et al. 2022 unsupervised generation of HDR images from SDR
mages.




Questions?



Modern High Dynamic Range
Imaging at the Time of Deep
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HDR Direct Visualization:
HDR Displays



Backlight

ing

Modaulati

HDR Display

LED panel

Diffusion panel

LCD panel



Baseline Method for Backlight Display

Backlights values extraction
Down-sampling

square root

Backlights values

luminance

LED panel

Backlight image

(L
.....

> LCD image

d .

"

S A

HDR input image

L. Duan , K. Debattista, Z. Lei and A. Chalmers, “Subjective and Obijective Evaluation of Local Dimming Algorithms for HDR Images”, IEEE ACCESS, VOL. 8, MARCH 2020



INPUT

Deep-learning Approach for BLD

{R,G,B,py}
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OPTIMIZATION
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FUNCTION
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HDR Reconstruction
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Simulation Backlight
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N JAN

Source: L. Duan, D. Marnerides , A. Chalmers , Z. Lei , and K. Debattista, “Deep Controllable Backlight Dimming for HDR Displays”, IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 3, AUGUST 2022




HDR Conversion to SDR Content:
Tone Mapping



Tone Mappin

2.3e+04

3.9e+03
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32-bit Scene-referred HDR image 8-bit Tone Mapped Image
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The Full Pipeline
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The Full Pipeline

RGB = Y Lumlnqnce Colc?r
mapping mapping
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RGB =&Y

The Full Pipeline
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The Full Pipeline
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The Full Pipeline
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The Full Pipeline

Luminance Color
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The Full Pipeline
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The Full Pipeline

Luminance Color
mapping mapping
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The Full Pipeline
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Aims/Goals



Aims/Goals

» Quality optimisztion

e [0 pest reproduce the characteristics of the LDR image (Cite:VHE 2021)

e [0 mimic the original HDR content under a limited range [0-255] (Deep TMO Cite:RSV 2020)
e | carning-based self-supervised TMO (Cite:WSC 2022)

e [Fusing stack of n differently exposed LDR images (Deeptuse Cite:DF2017)
e Optimising color mapping using HSV (TMNet Cite: 2ANVZ2WN 2020)
- Performances optimisation

e Parameters free TMO (TMO-net Cite:PKO 2021)

e Real-time DL based TMO (Cite:Z2VWW 2022)



Architectures




Architectures - Generative Adversarial Network

Legend:
G = Generator

D = Discriminator
| DR-TMO image Loan(G, D) = E [log D(Y)] + E,[1 — log D(G(X))] Y = Ground truth SDR
_— X = HDR input
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Architectures - (Generative Adversarial Network Ref: VHF-2021

Color Reproduction

I N R R N N L] &

max(Y)

Y(x)
Y.(x) =log(4 + ¢)/log(A + €)

Input HDR

: SDR dataset
tone mapping N

\!}1'} : ?F;; | /,/ 23e+04 EDIOCESS
WA & gR.... prep Generator
6.7e+02 >
1.1e+02 U-net

HDR dataset

[ Lyar

natural ]

VINKER Y., HUBERMAN-SPIEGELGLAS I., FATTAL R.: Unpaired learning for high dynamic range image tone mapping. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021 (2021), IEEE, pp. 14637-14646. URL: https://doi.org/10.1109/ICCV48922.2021.01439.



Architectures - Generator U-net modified Ref: PKO-2021

IIIII

e Attention module

e Channel and pixels-wise; v
1
e Nsuring that the - ' i
generator ] }
e Global/local contrast; W T

e (Color consistency;

- T N - N \ % \I CONVOLUTION
® E‘ | M | nate ur d ar / OVEr- > @ @ > ﬂ G .I ﬂ G .I > % \I INSTANCE NORMALIZATION
ex OO S L’ re <| rq ag e : RESIDUAL BLOCK (RB) g - CASCADE BLOCK (CB) g % \' e

synthesis)



Architectures - Cycle-GAN Approach Ref: zzww-2020-2022

Input HDR

2.3e+04 H

3.9e+03
6.7e+02
1.1e+02
Lk 2.0e+01

Combine

\4
RGB2HSV »| Cycle-GAN
HSV2RGB
> Cycle-GAN q
N. Zhang, C. Wang, Y. Zhao and R. Wang, "Deep tone mapping network in HSV color space," 2019 IEEE Visual Communications and Image Processing (VCIP), Sydney, NSW, Australia, 2019, pp. 1-4, doi: 10.1109/VCIP47243.2019.8965992. Tone mapped

ZHANG N., ZHAO Y., WANG C., WANG R.: A real-time semi-supervised deep tone mapping network. IEEE Trans. Multim. 24 (2022), 2815-2827. URL: https://doi.org/10.1109/TMM.2021.3089019, doi:10.1109/TMM.2021.3089019. 2



Architectures - Multi-Scale (Generator Ref: RSV-2020
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A. Rana, P. Singh, G. Valenzise, F. Dufaux, N. Komodakis and A. Smolic, "Deep Tone Mapping Operator for High Dynamic Range Images," in IEEE Transactions on Image Processing, vol. 29, pp. 1285-1298, 2020, doi: 10.1109/TIP.2019.2936649.



Architectures - Convolutional Neural Network Ref: DF-2017
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K. R. Prabhakar, V. S. Srikar and R. V. Babu, "DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs," 2077 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 4724-4732



Architectures - DeepFuse CNN Ref: DF-2017
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K. R. Prabhakar, V. S. Srikar and R. V. Babu, "DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 4724-4732, doi: 10.1109/ICCV.2017.505.



Architectures - Autoencoder Ref: WCS-2022
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(Generative Adversarial Approach



The Loss Function- General Approach

o

ther Loss tunctions
Loss = e To preserve the content and structure
. pIXel-wise 0Sss.
fAdversarié( e perceptual loss, features matching, gradient

\_ %

* |mage appearance matching

\_ J




The Loss Function Ref: VHF-2021

e \/Inker et al. 2027:

e Not training the generator (N) to conceive new images from scratch

* Removing biases In Y. with respect to regular LDR images

e Discriminator, 3 applied at different image scale ( |* bicubic downscaling x 2k)

Lp= Y (Ey, [P ) =11+ Ey,, D NOD))

ke(0,1,2

* D, Is used to improve the ability of the generator (N) to match the natural appearance

L .. = Z ( Y [Dk( KN(Y.) — 1)]2> adversarial loss
k€0,1,2



The Loss Function Ref: VHF-2021

e \/Inker et al. 20217:

e [0 preserve the content ana structure

* measure based on Pearson correlation on two images 1, J

PP =35X5 pixels

1 Z cov(pp, py)

I,J) = —
) = o)

P PrPj

e | OOS function

Litruct = Z P ( I* Y. 1* N(Yc))

ke0,1,2



The Loss Function Ref: PKO-2021

e Panectta et al. 20271 min-max adversarial 10ss

Loss = L,;, + A\Lpy + ) Lyge + A3L6p;1

e Perceptual 0ss:

1 ] | FO i jayer of the VGG19 network
Lyog= D, — [IIFO() = FAGO)II,]
v M M;  jth element of the layer

e eature matching loss:

I total number of layers

1 . ]
Liy=Exy Y. m [ IDO(Y) = DYGX) ]|
=17 i N, number of elements in each layer

DY jth layer feature extractor of the discriminator



The Loss Function Ref: PKO-2021

e (Gradient profile loss:

e Preserve edge information between the ground truth and synthetic SDR images

. 1 . . 1 .
Lop; (YY) = Z (Etmce (V G(Y).-V YZ) +thce (V G(Y).-V YC)>

C

(-)" lranspose operator

Y, Y are the ground truth and the synthetic SDR images
H, W height and width of the image



The Loss Function Ref: RSV-2020

e Rana ct al. 2020: min-max agversarial 10ss

e Perceptual loss (same as PKO 20217):

1 ] | FO i jayer of the VGG19 network
Lyo= D, — [IIFP0) = FAGu)II,]
v M M;  jth element of the layer

e Feature matching loss (same as PKO 2021).

I total number of layers

1 . .
Lpy = Exy Z I ||| DY(y) = DG, |
=17 i N, number of elements in each layer

DY jth layer feature extractor of the discriminator



The Loss Function Ref: zzww-2022

e /hang et al. 2020: classic cycle loss and min-max adversarial loss for both
luminance and saturation

LOSS — ALI dV + L + ﬁ( ycle Cleb)

o Perceptual pixel loss LT norm for both luminance and saturation:

Lpixel = E@,y) || Gx) —y| ‘1




Self-Supervised



The Loss Function Ref: DF-2017

e Praphakar et al. 2017 based on SSIM objective metric (which it gives a score)

1
Loss =1 —— Sc
Y Z ore(p)
pEP

e Score(p): takes into account the contrast and the desired structure, the luminance is
discharged (local luminance comparison in the patches is not significant):

N number of pixels in the image

2. + C P number of pixels in the patch

Score(p) = 7 y estimated patch

2+o02+C
T yrfused patch

(75] Gyf Varliance

Gy,yf covarlance



The Loss Function Ref: WCS-2022

e \Wang et al. 2022: L1 norm based on VGG features maps

Loss = (@ @FG(ITM)) i v

------------------------------------------------------ JVGG()) =
------------------- 1+ M,
;= log(1 + plypg) Feature contrast neighbornood-masking
poo log(1 + u) “re-processing HDR input image to transform v — Oy,
t into VGG features space, 1.e., VGG is traineo n 0 | + €
; using SDR images Hb
Iypr = 0.5 X SFCI Feature contrast self-masking
mean(ly) M, = sign(C)|C|"
feature magnitude ~eature contrast
at pixel pTTT 1
gaussian filtered feature value for Gt

patch P centre at pixel p /| + €



Future Directions



Color Rendition

e [tis based on a simple concept of keeping INto the tone mapped Image the origina
color ratio of the high dynamic range input image:

RGBSDR — <—Y ) Y. SDR
HDR

* However, several color mapping technigues have peen developed:
e [he main am Is to minimize the hue distortion
e (Color gamut mapping

o (Color retargeting: based on optimal saturation parameter



Computational and memory management costs

e Complex models
e Complex architectures
e High number of parameters

* Hign memory management costs

e Reduces their applicability where we need fast response

o Natural question

e How 10 reduce the model complexity while retaining similar guality performance’



Any Questions?



Modern High Dynamic Range
Imaging at the Time of Deep
Learning

Francesco Banter le and Alessan dro Artusi



Why Do We Need Metrics?

e |n HDR/SDR Imaging, we need to determine and to understand what is
happening during different steps of the pipeline:

e Acquisition: we want to understand If there are artifacts due to acquisition
or single image reconstruction;

e Compression: we want small file size at maintaining high-quality;

e Jone mapping: we want to adapt content for different display while
keeping quality as it was “scene-referred”.



Reference Metrics

Reference

Distorted Image Quality Value



Reference Metrics: Current Limitations

e [hese models are very complex:
o Difficult to port to GPUs with ease.

 [hey are computationally expensive; e.qg., minutes of computations for a full
HD Image.

e Do we need a distortion map”

® For most tasks we just need |



DIQM: Deep Image Quality Metric

e A general and simple architecture meant for distilling reference-based metrics

(e.q., HDR-VDP, DRIIM, etc.) into a CNN architecture.

Distorted Image
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DIQM: Datasets

TRAINING SET VALIDATION SET TEST SET

HDR-C
(HDR-VDP 2.2)

SDR-D

(HDR-VDP 2.2) 11,536 1,441 1,441 14,418



DIQM: SDR-D Dataset

REFERENCE SDR IMAGE BLUR DISTORTION NOISE DISTORTION



SDR-D Dataset

DIQM
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DIQM: HDR-C Dataset
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DIQM: Loss and Encoding

e | 0ssis a classic MSE; it works well for predicting quantitative values.

® —ncoding:
e SDR Images: linear scaling to fit the range [0, 1]

e HDR Images: logo(x + 1)
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DIQM: Conclusions

® [here two main results:
e \\We can distill metrics into a CNN with reasonable quality;

e The CNN can be simple; no need of overly complex
models:

e The CNN runs real-time at inference time;

e Small weights.



Visiblility Distortion Maps CNN-based

e Several applications (imaging and computer graphics) are requiring a visual
difference map.

® [raditional objective metrics can not be used; e.g., single numeric value.

e -xisting visibility metrics produce a visual difference map, but they are
iInaccurate.

o | ack of large image collections with good coverage of possible distortion.

e A |large dataset of image pairs (ground truth, distorted) is collected, e.qg.,
user marking indicate wether the distortion is visible.

e A CNN is used and trained on this large dataset.



Visiblility Dlstortlon Maps CNN- based

Distorted Patch Difference 256
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R Distortion
512 Map
12
1
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256
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96 256
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Visibility Distortion Map: Conclusions

e [here main results:

o A statistical model has been proposed to fit the large
data collected and used as loss function.

e —xisting visibility metrics can be improved through the
usage of a CNN based method, which it is trained using
the collected dataset and using as loss function the
oroposed statical model.



Going No-Reference



No-Reference Metrics

No-reference

Distorted Image

Quality Value



Architecture

NoR-VDPNet(++)
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NoRVDPNet(++): HDR-VDP2.2/TMQI Datasets

TRAINING SET VALIDATION SET TEST SET

HDR-C
(HDR-VDP2.2)

SDR-D

(HDR-VDP2.2) 80.244 10.025 10.044 100.313
TMO

TMal 106.290 13.320 13.320 132.930

TMO 106.290 13.320 13.320 132.930

(HDR-VDP2.2)



NoRVDPNet(++): TMO Dataset

Drago et al. 2003 Durand and Dorsey 2002 Reinhard et al. 2002

18 tone mapping operators from the HDR-Toolbox: https://qgithub.com/banterle/HDR Toolbox/



https://github.com/banterle/HDR_Toolbox/

NoRVDPNet(++): ITMO Dataset

C—

Input SDR Image Eilertsen et al. 2017 Santos et al. 20202
(tonemapped) (tonemapped)

6 inverse tone mapping operators 4 available in the HDR-Toolbox: https://github.com/banterle/HDR Toolbox/


https://github.com/banterle/HDR_Toolbox/

NoR-VDPNet(++): Loss and Encoding

e | 0ssis a classic MSE; it works well for predicting quantitative values:

® —ncoding:
e SDR Images: linear scaling to fit the range [0, 1]

e HDR Images: logo(x + 1)
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Results: SDR-D Test Set
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Results: ITMOS Test Set
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NoR-VDPNet(++): Conclusions

¢ \\\e can go from reference to no-reference;

e \\WV\hen we model several distortions we have a larger error
than a single distortion;

e | ayer normalization increases quality;

e This scheme works for TMQI (SSIM-based);

o Still real-time performance.






NR-IQA Principle
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NR-IQA Training - Phase 1
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NR-IQA Training - Phase 2
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NR-IQA: Conclusions

e \ain results:

e Computational performances are not real-time, but it
can be still optimized.

e |t outperforms other NR-IQA methods.

e |t is comparable to HDR FR-IQA:

o Wwithout the need of a reference image.



Applications
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Applications: Optimized TMO

TMO without optimized parameters TMO with optimized parameters

Video Courtesy of Jan Frohlich - Stuttgart HDR Video Dataset



Application: A Differentiable TMO



Application: A Differentiable TMO



Application: A Differentiable TMO
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Applications: JPEG-XT Compression

l
P 2 3e+04
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| i Reinhard et al.’s TMO
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Applications: Photo Selection
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s: Photo Selection
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Future Directions




Future Directions

e Novel datasets have been published for HDR videos with MOS:

e https://live.ece.utexas.edu/research/LIVEHDR/
LIVEHDR index.html

e HDR videos/NeRFs metrics seem a natural next step.

e HDR Metrics based on deep-learning have only now started to
appear.

o \/\Ve still need to rely on experiments for capturing large datasets.


https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html

Thank you for your attention!

Please contact us at:

a.artusi@cyens.org.cy francesco.banterle@isti.cnr.it
Or VISIt us:

https://deepacamera.org.cy http://vca.isti.cnr.it
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