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HDR Imaging: Merging



HDR Imaging:

Acquisition



HDR Imaging: Merging
• To merge  images,  , at different exposure times, , we sum 

them up taking into account that they were taken at different 
shutter speed: 

 

• where  is the inverse camera response function, and  
is a weighting function. Typically, the merge is computed in the 
log-domain to reduce noise.
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HDR Imaging: Merging
• The result  is a radiance map: 

• Note  is the irradiance symbol; the radiance symbol is : 
• Technically speaking we should taking into account that: 

    

• But… Most lenses already compensate for this!

E(i, j)
E L

E(i, j) = L(i, j) π
4 ( d

f )
2
cos4 α



HDR Imaging: The Weighting Function
• The weighting function selects 

well-exposed pixels from the 
input image to avoid noisy and 
saturated pixels: 
• Such value increase noise or 

bias in the final HDR image. 
• For example: 

w(x) = 1 − (2x − 1)12



HDR Imaging: Camera Response Function
• A Camera Response Function (CRF), , is a non-linear function 

of image irradiance: 
• It is a solution for compressing the irradiance values large 

dynamic range into a fixed range of recordable values; i.e., 8-
bit of a JPEG image. 
• RAW images (stored in 10-14 bits) have mostly a linear 

behavior. 
• It is typically not known, but it can be estimated.

f



HDR Imaging: Camera Response Function
• Exploiting: 

 

• A typical estimation method is based on optimization: 

 

• Where .

Zk(i, j) = f(E(i, j)tk) → f −1(Zk(i, j)) = E(i, j)tk → log f −1(Zk(i, j)) = log E(i, j) + log tk

% =
N

∑
k=1

∑
i,j

(log g(Zk(i, j)) − log E(i, j) − log tj)
2

+ λ∑
x

g′ ′ (x)2

g(x) = f −1(x)



HDR Imaging: Camera Response Function



HDR Imaging: Camera Response Function
• Nowadays, many cameras/smartphone manufactures and displays makers have 

started to agree on some standard CRF or OETF. Most famous examples: 
• PQ: 

where  

• HLG: 

f(Y) = (c1 + c2Ym1n

1 + c3Ym1n )
m2

Yn = Y
10000

f(Y) = {r Y Y ∈ [0,1]
a log(Y − b) + c Y > 1



HDR Videos
• There are different strategies: 

• Multiple sensors combined with beam splitter capturing 
frames at different exposures time [Tocci+2011]. 

• Varying the exposure shutter speed at each frame 
[Kang+2003]. 

• Varying the exposure time in the bayer filter or assorted pixels 
[Yasuma+2010].



HDR Videos: Multiple Sensors
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HDR Videos: Varying Exposure at Each Frame
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HDR Videos: Assorted Pixels

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



HDR Videos: Assorted Rows

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



HDR Imaging:

Tone Mapping - SDR Visualization



Tone Mapping
• A tone mapping operator (TMO) is a function, , that reduces the 

dynamic range of a HDR image to fit into a SDR display. We have two main 
classes: 
• Global operators: it uses global statistics of the image to be tone 

mapped: 
• We want to maintain the global contrast of the original image. 

• Local operators: it uses both global and local statistics of the image to 
be tone mapped: 
• We want to maintain both the local and global contrast of the original 

image.

f( ⋅ )



Tone Mapping
• Most operators work only on the luminance channel: 

  

• For the sRGB color space, this is defined as 

 

• This is to avoid color distortions when applying the curve on the three 
color channels.

Rd
Gd
Bd

= f(Lw)
Lw

⋅
Rw
Gw
Bw

= Ld

Lw
⋅

Rw
Gw
Bw

Lw = 0.2126 ⋅ Rw + 0.7152 ⋅ Gw + 0.0722 ⋅ Bw



Tone Mapping: Global Operators
• A classic local TMO is the Reinhard operator [Reinhard+2002]: 

  

• where  is a user parameter, and  is the geometric mean of 
the luminance of the entire image: 

Ld = f(Lw) = Lm

1 + Lm
Lm = α

L̂w
Lw

α ̂Y

L̂w = exp( 1
n ∑

i,j
loge Lw(i, j) + δ)



Tone Mapping: Global Operators Example

HDR Image Reinhard with  L̂w = 1



Tone Mapping: Global Operators Example

HDR Image Reinhard with  computed L̂w



Tone Mapping: Local Operators
• A classic local TMO is a variant of the Reinhard operator 

[Reinhard+2002]: 

  

• where  is a function computing the mean around the pixel 
. However, we need to avoid strong edges that may 

create halos. So  has to be edge-aware; e.g., the bilateral 
filter.

Ld = f(Lw(i, j)) = Lm(i, j)
1 + g(Lm(i, j)) Lm(i, j) = α

L̂
Lw(i, j)

g( ⋅ )
(i, j)

g( ⋅ )



Tone Mapping: Local Operators Example

HDR Image Reinhard without an

edge-preserving filter



Tone Mapping: Local Operators Example

HDR Image Reinhard with an 

edge-preserving filter



Color Distortions
• The problem with processing only the luminance is that we 

have the following problems: 

•  the saturation of the pixel increases. 

•  the saturation of the pixel decreases.

Ld < Lw

Ld > Lw



Color Solutions
• Main solutions: 

• Desaturate  by applying a power function in 
 [Schlick+1995]. 

• Linear desaturation taking into account the TMO derivate 
[Mantiuk+2009]. 

• Hue reset and saturation scale in the LCh color space 
[Pouli+2013].

[Rw, Gw, Bw]/Lw
(0,1]



HDR Imaging: 
Native Visualization - HDR Monitors



Native Visualization: LEDs HDR Monitors
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LED-based HDR Monitors: PSF



LED-based HDR Monitors: PSF



Native Visualization: HDR Monitors
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HDR Imaging:

Metrics



Image Quality Metrics: with Reference

Q = 35

Probability MapReference Image

Distorted Image

• A probability map; each pixel has the probability of being detected when compared 
to the reference by a viewer. 

• Q predictor value in the range [0,100]; the higher the better.

METRIC

Quality value



Image Quality Metrics: No Reference

Q = 35

Probability Map

Distorted Image

• A probability map; each pixel has the probability of being detected when compared 
to the reference by a viewer. 

• Q predictor value in the range [0,100]; the higher the better.

METRIC

Quality value



Metrics for HDR Applications
• HDR-VDP 2.2/3.0.6/DRIM: 

• They are reliable metrics for the general case: 

• HDR vs HDR; HDR vs SDR; etc. 

• Computational cost is demanding. 

• A reference is required! 

• TMQI and TQMI-II: 

• Limited for comparing HDR vs SDR for tone mapping. 

• A reference is required!



HDR Open Problems:

Acquisition



HDR Problems: 

Merging Exposures in Dynamic Scenes
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HDR Problems: 

Merging Exposures in Dynamic Scenes

2.0e+01

1.1e+02

6.7e+02

3.9e+03

2.3e+04

Lux

Scene-referred HDR image

Stack of 8-bit images

MERGE



HDR Problems: 

Merging Exposures in Dynamic Scenes
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HDR Problems: 

Single-Image Acquisition / Inverse Tone Mapping
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HDR Open Problems:

Visualization



HDR Problems: Tone Mapping
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HDR Open Problems:

How to Measure the Performance?



How to Measure Performance?

• How do we convert large experiments into metrics? 

• Can we speed-up high quality but computationally expensive 
metrics? 

• Can we have no-reference metric?



To Recap



To Recap
• In this tutorial, we will address how to use Deep Learning 

methods for: 
• Acquiring HDR content; 
• Display HDR images and videos; 
• Metrics for comparing HDR content.



Questions?
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Convolutional Neural Networks

 Filter kernel

 Pooling Convolution + activation  Fully Connected

 Outputs

 Convolution + Activation

 Input



Pooling - Downsampling (e.g., max function)

2 1 7 4

5 3 5 2

1 9 7 7

5 5 7 8

5 7

9 8

2x2 filter, stride 2

• Controlling overfitting 
• Reducing the number of parameters 
• Memory footprint 
• Reducing the number of computations



Activation Functions (layers) Categories - most used

 1. Ridge activation functions: 
1.1 Linear 
1.2 ReLU 
1.3 Logistic 

2. Radial activation functions: 
2.2 Gaussian 
2.3 Multi-quadratics 
2.3 Polynomials

x

y

0

ReLU(x) = max(0,a + x′ b)



Fully Convolutional Neural Networks

FCN with only convolutional layers (with activation functions).

Skip connections may be added to recover fine details.

FCN with convolutions (with activation functions), 

downsampling, pooling, and upsampling.

Skip connections may be added to recover fine details.



The U-Net

Encoder/Contraction Decoder/Expansion



Generative Adversarial Networks (GANs)
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GANs: Backpropagation in the Discriminator
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GANs: Backpropagation in the Generator
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GANs: Loss Function - e.g., Minimax loss 

LGAN(G, D) = "y[log D(y)] + "x[1 − log D(G(x))]
Discriminator loss Generator loss

 = discriminator estimated probability that the real data instance y is realD(y)
"y  = expected value over all the real y instances

G(x)
D(G(x))
"x

 = generator instance output value when given random input/input image x

 = discriminator estimated probability that a fake instance is real

 = expected value over all fake generated instances
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Introduction
• HDR reconstruction from multiple-

exposures: 

• If we don’t place the camera on 
a stable tripod the camera 
moves! 

• If we have wind or people, there 
will be movement! 

• All this means, we will have 
artifacts!



Introduction: Camera Movement
• What if we capture a stack of exposure images free-hand without a tripod?

-2-stop 0-stop +2-stop



Introduction: Camera Movement



Introduction: Camera Movement

Merged Stack and Tone Mapped



Introduction: Camera Movement



Introduction: Camera Movement

Merged Stack and Tone Mapped



Introduction: Camera Movement



Introduction: Camera Movement
• Typically, if we have ONLY camera movement, we can 

manage the merge: 
• We have only a single global movement. 

• There are several robust algorithm to deal with such situations: 
• Greg Ward’s MTB method. 
• Tomaszewska and Mantiuk’s Homography algorithm. 
• Gallo’s Multiple Homographies.



• What if we capture a stack of exposure images on a tripod in a dynamic scene?

-2-stop 0-stop +2-stop

Introduction: Dynamic Scene



Introduction: Dynamic Scene



Introduction: Dynamic Scene

Merged Stack and Tone Mapped



Merged Stack and Tone Mapped

Introduction: Dynamic Scene



Merged Stack and Tone Mapped

Introduction: Dynamic Scene



Introduction: Dynamic Scene



Introduction: Dynamic Scene

Merged Stack and Tone Mapped



Introduction: Dynamic Scene

Merged Stack and Tone Mapped



Introduction: Dynamic Scene

Merged Stack and Tone Mapped



Introduction: Camera Movement
• Typically, if when the moving people/objects are small they can 

be fixed easily. 
• There are several robust algorithm to deal with such situations: 

• Masks: Pece and Katuz. 
• Grandaos et al. 
• PatchMatch-based: Sen et al./Hu et al. 



Datasets



Capturing Data: Kalantari’s Data

-2-stop

0-stop

+2-stop

Dynamic StackVideo Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



-2-stop

0-stop

+2-stop

Dynamic Stack Static Stack

Capturing Data: Kalantari’s Data

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



-2-stop

0-stop

+2-stop

Dynamic Stack Static Stack Training Stack

Capturing Data: Kalantari’s Data

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



Images
• For each SDR image , we know: 

• The CRF, ; i.e, we know its inverse ; 

• The exposure time   

• : Shutter speed. 

• : Aperture value. 

• : ISO value. 

• : a constant depending on the camera.

Ii

f( ⋅ ) g( ⋅ ) = f −1( ⋅ )

ti = ISOi ⋅ t′ i

K ⋅ A2
i

t′ i

Ai

ISOi

K ∈ [30.6,13.4]



Images
• Typically, we work with “calibrated” SDR image : 

  

• In many works, the CRF is assumed to be . 
• Therefore, we have: 

 

Hi

Hi = g(Ii)
ti

f(x) = x 1
2.2

Hi = I2.2
i

ti



Images: Patches and Augmentations
• All methods are trained on patches of different size: , 

, .  
• Patches may be create with or without overlap. 
• We have different augmentations: 

• Rotation, Flips, etc. 
• Swapping color channels [Kalantari et al. 2017] 

40 × 40
256 × 256 512 × 512



Preprocessing
• The problem can be “simplified” by using classic approach for a 

first alignment: 
• Homography alignment introduced by Wu et al. 2018; 
• Optical flow alignment introduced by Kalantari et al. 2017. 

• This initial alignment reduces blur. 
• Typically, it matches the background well: 

• Local mismatches are left.



HDR Image Datasets

Dataset Name #Images #Resolution Calibrated Website

Kalantari Dataset 74 1.5MPix Uncalibrated
https://

cseweb.ucsd.edu/
~viscomp/projects/

SIG17HDR/

Tursun Dataset 17 0.6Mpix Uncalibrated
https://

user.ceng.metu.edu.t
r/~akyuz/files/

eg2016/index.html

https://cseweb.ucsd.edu/~viscomp/projects/SIG17HDR/
https://user.ceng.metu.edu.tr/~akyuz/files/eg2016/index.html


HDR Video Datasets
Dataset 
Name #Videos #Resolution Length FPS Color 

Space Format Website

Stuttgart 
HDR Dataset 33 1920×1080 13s-100s 24/25 REC709 Floating 

Point

https://
www.hdm-

stuttgart.de/
vmlab/projects/

hdr
UBC HDR 

Video 
Dataset 

10 2048×1080 7s-10s 30 REC709 Floating 
Point

http://
dml.ece.ubc.ca/
data/DML-HDR/

LIVE HDR Video 
Quality 

Assessment 
Database

31 (310 at 
different bit-

rates)
0.32Mpix 3s-10s 50/60 BT2020 HDR10

https://
live.ece.utexas.edu/
research/LIVEHDR/

LIVEHDR_index.html

MPI HDR 
Video 

Dataset
2 0.3Mpix 24s-34s 24 REC709 Floating 

Point

https://
resources.mpi-
inf.mpg.de/hdr/

video/

EBU HDR 
Video 

Dataset
10 3996×2160 10s-31s 50 BT2100 HLG

https://
tech.ebu.ch/

testsequences

https://www.hdm-stuttgart.de/vmlab/projects/hdr
http://dml.ece.ubc.ca/data/DML-HDR/
https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
https://resources.mpi-inf.mpg.de/hdr/video/
https://tech.ebu.ch/testsequences


End2End Architectures



Kalantari et al. 2017
• Kalantari et al. 2017 proposed a simple 

solution: 
• Optical Flow for the main alignment 

between exposures; 
• An end2end (a FCN) with ReLU in all 

layers except a sigmoid for the last layer: 
• Convolution varies in kernel size from 

large to small: 

• , , , and 7 × 7 5 × 5 3 × 3 1 × 1

1×
1×

n0



Kalantari et al. 2017
• Kalantari et al. 2017 noted that the simple solution have some 

issues: 
• It is difficult to train; we need a huge dataset! 
• It does not fix alignment artifacts. 

• The solution is to use the network to: 
• Compute Weights. 
• Refine images.



Kalantari et al. 2017
•Weight Estimator: 

•The shown architecture is used to compute the per-pixel weights, , to obtain the 
estimated HDR image : 

  

•Refined Images: 

•The network also refines the alignment obtaining new improved images : 

 

α
Ĥ

Ĥ =
∑i αi ⋅ Hi

∑i αi

H̃i

Ĥ =
∑i αi ⋅ H̃i

∑i αi



Kalantari et al. 2017

NETWORK

Hi H̃i αi

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



Encoder-Decoder - Wu et al. 2018

Encoder1
Encoder2

Encoder3

De
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Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



Attention HDR 
• Yan et al. 2019 introduces two blocks: 

• Attention Module: 

• The attention is computed on low level features. 

• The attention is applied to features of images that are not the reference. 

• Residual Dense Blocks [Zhang et al. 2018] with dilated convolutions to have a 
larger receptive field.



Attention HDR
64Reference

+2-stop

128 64

64

64
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Attention HDR

+



Attention HDR

+

Dilated Convolutions



ADNet
• Liu et al. 2021, similarly to Pu et al. 2020, proposed for NTIRE 2021 a network based on 

two main blocks: 

• Attention computed using the reference, similar to Yan et al. 2019. 

• Pyramid, Cascade and Deformable (PCD) module by Wang et al. 2019: 

• PCD is applied at the feature level of the gamma-corrected images. 

• This module uses deformable convolutions 

OFFSET

DEFORMABLE CONVCLASSIC CONV



ADNet - PCD

FEATURE I1 FEATURE I2

I1 I2
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GAN Architectures



HDRGAN - Niu et al. 2021: Generator

Ĥ1 Ĥ2

L3L1 L2

L1

L2

L3



HDRGAN  - Niu et al. 2021: Training
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UPHDR-GAN - Li et al. 2022: Generator
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UPHDR-GAN - Li et al. 2022: Training

DISCRIMINATOR
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GENERATOR
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Loss Functions



Loss Function in the -Law Domainμ
• Kalantari et al. 2017 introduced a L2 loss function in a tone-mapped domain: 

 

 where  is a differentiable tone mapping function based on the -law: 

  

• Note that there are variants of  where we have L1 instead of L2. 

• This loss function is ubiquitous in most HDR works for reconstruction and 
inverse tone mapping.

ℒrec( ̂I, I) = ∥τ(I) − τ( ̂I)∥2

τ( ⋅ ) μ

τ(I) = log(1 + μI)
log(1 + μ) μ = 5000

ℒrec



GAN Loss
• Our goal is: 

 

• Typically a GAN loss is defined as: 

 

where: 

•  is the adversial loss. 

•  is the content/reconstruction loss. 

•  and  are weights for balancing the two losses.

arg min
G

max
D

ℒ(G, D)

ℒ(G, D) = α1ℒGAN(G, D) + α2ℒrec(G)

ℒGAN(G, D)
ℒrec(G)
α1 α2



GAN Loss: HDRGAN
• Niu et al. 2021 has a GAN scheme with a content/reconstruction loss: 

 

• And a GAN loss based on the sphere generative adverbial loss [Park and Kwon 2019], 
where the Discriminator output an -dimensional vector  which is projected on 

: 

 

where  is the distance on the hypersphere, and . 

ℒrec = min
G (∥τ(Ĥ1) − Ĥ∥1 + ∥τ(Ĥ2) − Ĥ∥1)

n q
p ∈ *n

ℒGAN = min
G

max
D ∑

r
+z[dr

s(N, D(z))] − ∑
r

+x1,x2,x3
dr

s(N, D(G(x1, x2, x3))]

ds(p, p′ ) N = [0,…,0,1] ∈ ℝn



GAN Loss: UPHDR-GAN
• Li et al. 2022 has a GAN scheme with a content/

reconstruction loss: 

 

• The GAN loss is defined as: 

ℒrec = +x∼pdata(x)[ VGG(G(x)) − VGG(x2)
1]

ℒGAN = +y∼pdata(y)[log D(y)] + +x∼pdata(x)[log 1 − D(G(y))] + +b∼pdata(b)[log(1 − D(b))]



Loss Function in the -Law Domainμ



Videos



HDR Videos: Temporally Varying Exposure Time
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Video Strategies: Kalantari and Ramamoorthi 2019
• A 5-scale pyramid for computing a multi-scale optical flow 

using a CNN for each scale a simple FCN:

FCN 5-th scale

5-th scale

4-th scale

UPSAMPLE

WARP FCN 5-th scale UPSAMPLE

OPTICAL FLOW

RESIDUAL OPTICAL FLOW



Video Strategies: Kalantari and Ramamoorthi 2019
• Similar to the previous work by Kalantari et al. 2017, there is a 

merger (encoder-decoder).  
• To enforce temporal coherency and reduce artifacts the 

merger uses neighbors frames at previous and next time.



Video Strategies: Chen et al. 2021
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Video Strategies: Chen et al. 2021
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Evaluation



Metrics
• Many works uses: 

• Linear domain PSNR and SSIM. 

• -law or Reinhard et al. 2002’s TMO PSNR or SSIM 

• These approaches have many issues: 
• Linear domain PSNR and SSIM are prone to outliers. 

• -law and Reinhard et al. 2002’s TMO are empirical approaches that 
do not model the Human Visual System.  
• They may introduce distortions.

μ

μ



Metrics
• PSNR and SSIM should be computed using the PU21: 

• PU21 encodes absolute HDR linear value into approximately perceptually 
uniform (PU) values. 

• HDR-VDP 2.2, HDR-VDP 3.0.6, and FovVideoVDP. 
• Deghosting artifacts: Tursun et al. 2016.  
• Note that may HDR reference images and output images are uncalibrated: 

• If we do not have calibration data: 
• Display-referred values.



Limitations



Limitations
• The CRF needs to be known (a partial limitation); 
• Most methods are limited to merge ONLY three images: 

• There is not method addressing an arbitrary number of 
images or more than threes. 

• The difference in f-stop has to be fixed: 
• There is no method that can merge an image at -5-stop, 0-

stop, and +1-stop.



Other Problems in Reconstruction



Other Reconstruction Problems
• We have other problems for HDR reconstruction with partial real information 

that can be solved using deep learning: 
• Assorted pixels/rows [Choi et al. 2017, Çogolan et al. 2020,  Suda et al. 

2020, Xu et al. 2021, Vien et al. 2022]. 
• HDR from deep optics/masks [Alghamdi et al. 2019, Metzler et al. 2020] 
• HDR reconstruction using an event camera [Wang et al. 2019, Shaw et 

al. 2022, Messikommer et al. 2022]. 
• HDR reconstruction for quanta sensors [Gnanasambandam et al. 2020, 

Gao et al. 2022].
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The Linarization Dilemma
• One of the first step to decide is how we linearize the input SDR. 

• Many methods uses a standard  or : 

• Eilertsen et al. 2017, Marnerides et al. 2018, etc. 

• Note that many modern cameras encodes images using common CRF such as 
sRGB, PQ, and HLG.

γ = 2 γ = 2.2



Architectures



Architectures
• Here, we have two possibilities to solve the problem: 

• Approach 1: Given an input image, we generate directly a HDR image 

SDR Image HDR Image



Architectures
• This approach may also compute a tone mapped version of the radiance map to 

recover. If the tone mapper is invertible, we can obtain a radiance map.

SDR Image Tone Mapped HDR Image HDR Image



Architectures
• Another possibility is: 

• Approach 2: Given an input SDR image, we generate a stack of  SDR images at 
different exposure times.

n

-2-stop -1-stop +1-stop +2-stop

SDR Image HDR Image



Which Architecture?
• The bread and butter of most iTMO 

are 

• FCN. 

• U-Net [Eilertsen et al 2017]. 

• Residual Blocks [Kim et al. 2019]. 

• They are simple models that generally 
works. End2End

Input SDR Output HDR



Which Architecture?
• Activation function: 

• LeakyReLU/GeLU in the encoder part. 

• ReLU in the decoder part. 

• The last layer: 

• Sigmoid: tone mapped results or single exposures.



Which Architecture?
• Endo et al. 2017 employs a 

classic U-Net with a twist: 

• Encoder has 2D 
convolutions. 

• Decoders has 3D 
convolutions: 

• Generate in a single 
network all exposures. 

• Limitations: the number 
of exposures are 
limited.

3D Conv.

2D Conv.

Input SDR Output Exposures
3D Conv.

2D Conv.

Input SDR Output Exposures

DOWN NETWORK

UP NETWORK



Which Architecture?
• Marnerides et al. 2018 

proposed a multi-branch 
architecture to overcome U-
Net limits: 

• Local features; 

• Medium features; 

• Global features.

LOCAL BRANCH

DILATATION BRANCH

GLOBAL BRANCH

CONCATENATiON

FUSION

INPUT OUTPUT



Which Architecture?
• Kinoshita and Kiya 2019 

paired the global branch with 
U-Net to overcome some 
limitations of U-Net.

GLOBAL BRANCH

CONCATENATION

INPUT
OUTPUT



Which Architecture? Feature Masking
• Santos et al. 2020 introduces masking: 

• We can see inverse tone mapping as an inpainting problem, where our mask is 
defined using over-exposed pixels.

INPUT SDR MASK



Which Architecture? Feature Masking
• Santos et al. 2020 apply the mask at each convolution step:

INPUT SDR

MASK

×

W
EIG

HTS
M

ASK UPDATE
CO

NVO
LUTIO

N

×
W

EIG
HTS

M
ASK UPDATE

CO
NVO

LUTIO
N

…

×

CO
NVO

LUTIO
N

O
UTPUT



Which Architecture? Feature Masking
• Liu et al. 2020 has a network that recovers the inverse camera pipeline:

Dequantization Net

CRF Net

APPLY ICRF

Hallucination Net Refinement Net

SDR Image

Over-exposed Mask

HDR ImageLinear SDR Image

CRF



Which Architecture? Frequencies Separation
• adopted a classic end2end encoding paired with a GAN, so nothing special right now… The 

novelty: 

• A network for each frequency: 

• Base image or : is the output of filtering the input image, , filtered using an edge-aware filter: 

• Bilateral Filter, Guided Filter, WLS, etc. 

• Detail image or : is an image encoding the high-frequency details, and it is computed as: 
. 

• Capece et al. 2019 used a similar strategy for relighting faces. 

• A similar work with more refinement networks was proposed by Zhang and Aydın 2021 using 
WLS instead of the bilateral filter.

Ib I

Id
Id = I/Ib



Which Architecture? Frequencies Separation - Wang et al. 2019
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Which Architecture? Frequencies Separation - Zhang and Aydın 2021
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HDR Image Datasets
• Proper HDR images/videos ( -stop) are scarce on the Internet. 
• There are few datasets of real HDR images. 
• These datasets are typically uncalibrated: 

• This means that luminance values are relative; i.e., they do not 
have absolute values in . 

• Colors may not match the real colors. 
• They are stored in different formats without the use of a standard. 

Typically, using the Radiance (.hdr) or OpenEXR (.exr) format files.

≥ 18

cd/m2



HDR Image Datasets
Dataset Name #Images #Resolution Calibrated Website

HDR Survey 108 5MPix Scene-referred http://markfairchild.org/
HDR.html

HDR Eye 47 2MPix (full-HD) Display-referred

Stanford HDR Dataset 88 0.32Mpix Scene-referred https://qualinet.github.io/databases/image/
high_dynamic_range_imaging_dataset_of_na

tural_scenes/

Laval HDR Indoor 2100 2MPix (2:1 ratio) Relative values http://indoor.hdrdb.com/

Laval HDR Outdoor 205 2Mpix (2:1 ratio) Relative values http://outdoor.hdrdb.com/ 

Akyuz HDR Images 10 5MPix Relative values https://user.ceng.metu.edu.tr/~akyuz/
hdrdisp_eval/hdrdisp_project.html

Debevec HDR Images 21 0.3-2Mpix Relative values https://
www.pauldebevec.com/

MPI HDR Images 7 3MPix Scene-referred https://resources.mpi-
inf.mpg.de/hdr/gallery.html 

Classic HDR Images 10 <1Mpix Relative values https://www.cs.huji.ac.il/
w~danix/hdr/results.html

Funt HDR Dataset 105 3Mpix Scene-referred https://www2.cs.sfu.ca/
~colour/data/funt_hdr/

http://markfairchild.org/HDR.html
https://qualinet.github.io/databases/image/high_dynamic_range_imaging_dataset_of_natural_scenes/
http://indoor.hdrdb.com/
http://outdoor.hdrdb.com/
https://user.ceng.metu.edu.tr/~akyuz/hdrdisp_eval/hdrdisp_project.html
https://www.pauldebevec.com/
https://resources.mpi-inf.mpg.de/hdr/gallery.html
https://www.cs.huji.ac.il/w~danix/hdr/results.html
https://www2.cs.sfu.ca/~colour/data/funt_hdr/


HDR Video Datasets
Dataset 
Name #Videos #Resolution Length FPS Color 

Space Format Website

Stuttgart 
HDR Dataset 33 1920×1080 13s-100s 24/25 REC709 Floating 

Point

https://
www.hdm-

stuttgart.de/
vmlab/projects/

hdr
UBC HDR 

Video 
Dataset 

10 2048×1080 7s-10s 30 REC709 Floating 
Point

http://
dml.ece.ubc.ca/
data/DML-HDR/

LIVE HDR Video 
Quality 

Assessment 
Database

31 (310 at 
different bit-

rates)
0.32Mpix 3s-10s 50/60 BT2020 HDR10

https://
live.ece.utexas.edu/
research/LIVEHDR/

LIVEHDR_index.html

MPI HDR 
Video 

Dataset
2 0.3Mpix 24s-34s 24 REC709 Floating 

Point

https://
resources.mpi-
inf.mpg.de/hdr/

video/

EBU HDR 
Video 

Dataset
10 3996×2160 10s-31s 50 BT2100 HLG

https://
tech.ebu.ch/

testsequences

https://www.hdm-stuttgart.de/vmlab/projects/hdr
http://dml.ece.ubc.ca/data/DML-HDR/
https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
https://resources.mpi-inf.mpg.de/hdr/video/
https://tech.ebu.ch/testsequences


HDR Content Datasets
• Are these tables complete? 

• No, they are not. 
• There are more datasets, but it can happen they may be not be 

available for some time. For example: 
• LiU HDR Video Dataset: high-quality dataset that is not currently 

available on the web. 
• MPEG HDR Video Dataset: not freely available. 
• …



Augmentation Strategies
• Classic flips and rotations; 

• Cropping from high-resolution images; 

• Channel swapping [Kalantari et al. 2017]: 
• RGB channels are randomly swapped;



Creating Images for Training
• The training dataset: 

• <Input SDR, Output HDR> 

• How do we compute the input? 

 

•  is the virtual exposure value. 

•  is the camera response function where the simplest to be used is: 

Z = f(E ⋅ δt)
δt

f(x)

f(x) = x 1
2.2



Creating Images for Training
• Many methods employs a random function from Grossberg and Nayar 2003 dataset of CRFs: 

• Eilertsen et al. 2017 showed that meaningful CRF can be modeled as: 

 f(x) = (1 + σ) ⋅ xn

xn + σ
n ∼ %(0.9,0.1) σ ∼ %(0.6,0.1)



Creating Images for Training
•  is an important value to be picked up: 

• Its range is  

• Automatic exposure: 

•  

• We pick the  that maximizes the well-exposed pixels in the range : 

• We do not want too dark images.

δt

[1/Imin,1/Imax]

δt = 1
4Imean

δt [0.05,0.95]



Creating Images for Training
• We may perform a random augmentation: 

  

• In this case, we need to skip extremely bright and dark images: 

• These are difficult cases. 

• We need a minimum of well-exposed pixels in order to draw something of 
meaningful from our methods: 

• 50-75% of well-exposed pixels: 

• Half/Quarter of the image totally white or totally black.

δt ∼ [1/Imin,1/Imax]



Selecting Patches
• Eilertsen et al. 2017: 

• For each HDR, 10 patches are selected at  using random cropping. 

• Lee et al. uses random crops at  

• Endo et al. 2017: 

• Images are downsampled at . 

• Marnerides et al. 2018: 

• Random crop with Gaussian distribution (center image) at . 

• Santos et al. 2020: 

• Selection of patches with texture; i.e., mean gradient of the detail layer over 0.85 (bilateral separation).

320 × 320
256 × 256

512 × 512

384 × 384



Training



The Loss Function
• Eilertsen et al. 2017: 

• MSE in the log domain. 

• We have a loss function for the luminance and the reflectance component: 

• Equal weight in the paper for both losses. 

• Marnerides et al. 2018: 

• L1 + Cosine Loss (for colors in under-exposed areas): 

 , 

where  is the reference image and  is the results of the network. 

ℒcos( ̂I, I) = 1 − 1
N ∑

i,j

̂I(i, j) ⋅ I(i, j)
∥ ̂I(i, j)∥2 ⋅ ∥I(i, j)∥2

I ̂I



The Loss Function
• Lee et al. 2018 employs as content loss  and classic GAN loss: 

  

  

 

• Wang et al. 2019, Santos et al. 2020, Liu et al. 2020 uses a perceptual loss (VGG network) together 
with : 

  

• Liu et al. 2020 has a complex loss where the main contribution is the reconstruction loss ( )  TV loss 
and a CRF loss (MSE)

L1

ℒGAN(D) = 1
2 *x,y[(D(y, x) − 1)2] + 1

2 *x,z[(D(G(y, z), x))2]

ℒGAN(G) = *x,z[(D(G(y, z), x) − 1)2]

ℒL1
(G) = *x,y,z[∥y − G(x, z)∥1]

L1

ℒP(I, ̂I) = ∥ψ(I) − ψ( ̂I)∥2

L1



Videos



What’s about video?
• There are many papers treating videos: 

• In many cases, these works on a single frame: 

• There is no temporal coherence mechanisms in place: 

• Not working on multiple frames at the same time; 

• No temporal loss; 

• Why are these considered videos methods? 

• They use HDR10/HDR10+ video datasets with wide gamut (e.g., RECO2020 or REC2100 
color space). 

• They output directly PQ/HLG values. 

• They work on YUV input values.



What’s about video? Video Stabilization
• Eilertsen et al. 2019 showed how to make imaging method temporal coherent: 

colorization, inverse tone mapping etc. 

• The key is the introduction of a new loss: 

   

where . 

• Given that it is difficult to have good video dataset, the idea is to approximate a 
“video movement” by a small Euclidian Transformation , which can be: a 
translation, a rotation, and a scaling.

ℒ(I, ̂I) = ℒrec(I, ̂I) ⋅ (1 − α) + αℒreg(I, ̂I)

α ∈ [0.85,0.95]

T



What’s about video?
• If our network is  and its input  we can define the regularization as: 

   

•  is a random transformation: 

• Translation  pixels; 

• Rotation ; 

• Scaling ;

f( ⋅ ) Iin

ℒreg(I, ̂I) = ℒreg(I, f(Iin)) = (f(T(Iin)) − T(I)) − (f(Iin) − I)
2

T( ⋅ )
[−2,2]2

±1∘

[0.97,1.03]

The difference between

ground-truth and the 
network results after ; 
i.e., the “next frame”

T

The difference between

ground-truth and the 
network results.



Evaluation



Evaluation
• Main metrics recommended for evaluations are [Hanji et al. 2022]: 

• If we have a reference: 
• HDR-VDP 2.2, HDR-VDP 3.0.6, and PU21-PSNR. 

• If we do not have a reference: 
• PU21-PIQE, and PU-VSI. 

• To focus evaluation on the generated content, we should remove 
influence of the CRF. A possibility is to estimate the CRF using the 
reference (if available).



Future Directions



The Status
• Currently, 2-3 new methods appears every month on arXiv! 
• Many works just get old or new datasets and they train the 

latest architecture on them: 
• Diffusion networks; 
• Transformers; 
• etc.



Promising Approaches
• The main limitations of doing HDR and especially inverse tone mapping is that 

datasets are very small: 
• There are a small amount of images achieving 20-stops. 
• The few datasets may disappear due to maintenance!  

• On the other hand there are large datasets available online of SDR image that 
could be used to copy well-exposed data in over-exposed areas: 
• Banterle et al. 2021: unsupervised generation of HDR videos from SDR 

videos. 
• Wang et al. 2022: unsupervised generation of HDR images from SDR 

images. 
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HDR Direct Visualization:

HDR Displays



HDR Display: Modulating Backlight

LED panel

LCD panel

Diffusion panel



square root 

luminance Backlights values

Backlight image

Backlights values extraction

Down-sampling

/ LCD image

Baseline Method for Backlight Display

LED panel

LCD panelHDR input image

L. Duan , K. Debattista, Z. Lei and A. Chalmers, “Subjective and Objective Evaluation of Local Dimming Algorithms for HDR Images”, IEEE ACCESS, VOL. 8, MARCH 2020




Deep-learning Approach for BLD

Source: L. Duan , D. Marnerides , A. Chalmers , Z. Lei , and K. Debattista, “Deep Controllable Backlight Dimming for HDR Displays”, IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, VOL. 68, NO. 3, AUGUST 2022




HDR Conversion to SDR Content: 
Tone Mapping



Tone Mapping
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Aims/Goals
• Quality optimisztion 

• To best reproduce the characteristics of the LDR image (Cite:VHF 2021) 

• To mimic the original HDR content under a limited range [0-255] (DeepTMO Cite:RSV 2020) 

• Learning-based self-supervised TMO (Cite:WSC 2022) 

• Fusing stack of n differently exposed LDR images (DeepFuse Cite:DF2017) 

• Optimising color mapping using HSV (TMNet Cite:ZWZW 2020) 

• Performances optimisation 

• Parameters free TMO (TMO-net  Cite:PKO 2021) 

• Real-time DL based TMO (Cite:ZZWW 2022)



Architectures



Architectures - Generative Adversarial Network
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LGAN(G, D) = "y[log D(Y)] + "x[1 − log D(G(X))]
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X
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Y = Ground truth SDR
X = HDR input

Legend:



Architectures - Generative Adversarial Network Ref: VHF-2021

VINKER Y., HUBERMAN-SPIEGELGLAS I., FATTAL R.: Unpaired learning for high dynamic range image tone mapping. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021 (2021), IEEE, pp. 14637–14646. URL: https://doi.org/10.1109/ICCV48922.2021.01439.

Color Reproduction

Input HDR
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Architectures - Generator U-net modified Ref: PKO-2021

CB CB ATTENTION MODULE

× FUSION

INPUT

OUTPUT

CONVOLUTION

INSTANCE NORMALIZATION

ReLU
RESIDUAL BLOCK (RB)

RB

CASCADE BLOCK (CB)

+ RB +

• Attention module 

• Channel and pixels-wise; 

• Ensuring that the 
generator  

• Global/local contrast; 

• Color consistency; 

• Eliminate under/over-
exposure (image 
synthesis)



Architectures - Cycle-GAN Approach Ref: ZZWW-2020-2022

ZHANG N., ZHAO Y., WANG C., WANG R.: A real-time semi-supervised deep tone mapping network. IEEE Trans. Multim. 24 (2022), 2815–2827. URL: https://doi.org/10.1109/TMM.2021.3089019, doi:10.1109/TMM.2021.3089019. 2

Combine

Input HDR

HSV2RGB

Cycle-GAN

H
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Architectures - Multi-Scale Generator Ref: RSV-2020

A. Rana, P. Singh, G. Valenzise, F. Dufaux, N. Komodakis and A. Smolic, "Deep Tone Mapping Operator for High Dynamic Range Images," in IEEE Transactions on Image Processing, vol. 29, pp. 1285-1298, 2020, doi: 10.1109/TIP.2019.2936649.
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Architectures - Convolutional Neural Network Ref: DF-2017

K. R. Prabhakar, V. S. Srikar and R. V. Babu, "DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 4724-4732
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Architectures - DeepFuse CNN Ref: DF-2017

K. R. Prabhakar, V. S. Srikar and R. V. Babu, "DeepFuse: A Deep Unsupervised Approach for Exposure Fusion with Extreme Exposure Image Pairs," 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 2017, pp. 4724-4732, doi: 10.1109/ICCV.2017.505.
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Architectures - Autoencoder Ref: WCS-2022
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Generative Adversarial Approach



The Loss Function- General Approach

Loss = Ladv + ∑
i=1,..n

Li

Adversarial Loss
• perceptual loss, features matching, gradient

• pixel-wise loss.

• To preserve the content and structure 

• Image appearance matching 

Other Loss functions



The Loss Function Ref: VHF-2021
• Vinker et al. 2021: 

• Not training the generator (N) to conceive new images from scratch 

• Removing biases in      with respect to regular LDR images 

• Discriminator, 3 applied at different image scale (     bicubic downscaling       )  

•      is used to improve the ability of the generator (N) to match the natural appearance   

LD = ∑
k∈0,1,2

("YLDR [Dk( ↓k YL) − 1]2 + "YHDR [Dk( ↓k N(Yc))]2)

Yc

↓k × 2k

Lnatural = ∑
k∈0,1,2

("YHDR [Dk( ↓k N(Yc) − 1)]2)
Dk

adversarial loss



The Loss Function Ref: VHF-2021
• Vinker et al. 2021: 

• To preserve the content and structure  

• measure based on Pearson correlation on two images  

•  Loos function 

ρ(I, J) = 1
np ∑

pI,pJ

cov(pI, pJ)
σ(pI)σ(pj)

I, J

pI, pJ = 5 × 5 pixels

Lstruct = ∑
k∈0,1,2

ρ ( ↓k Yc, ↓k N(Yc))



The Loss Function Ref: PKO-2021
• Panetta et al. 2021: min-max adversarial loss

Loss = Ladv + λ1LFM + λ2LVGG + λ3LGPL

LVGG = ∑
i=1,...N

1
Mi

[ | |F(i)(Y) − F(i)(G(X)) | |1 ]

• Perceptual loss:

F(i)

Mi

ith layer of the VGG19 network
element of the layerith

• Feature matching loss:

LFM = "X,Y ∑
i=1,...T

1
Ni

[ | |D(i)(Y) − D(i)(G(X)) | |1 ] T
Ni

total number of layers
number of elements in each layer

D(i) ith layer feature extractor of the discriminator



The Loss Function Ref: PKO-2021

• Gradient profile loss: 

• Preserve edge information between the ground truth and synthetic SDR images

LGPL(Y, ̂Y) = ∑
c

( 1
H

trace (∇ G( ̂Y)c ⋅ ∇ ̂Yτ
c) + 1

W
trace (∇ G( ̂Y)τ

c ⋅ ∇ Yc))
( ⋅ )τ

Y, ̂Y
Transpose operator

are the ground truth and the synthetic SDR images 
H, W height and width of the image



The Loss Function Ref: RSV-2020
• Rana et al. 2020: min-max adversarial loss

Loss = ∑ Ladv + β∑ LFM + λLVGG

LVGG = ∑
i=1,...N

1
Mi

[ | |F(i)(y) − F(i)(G(x)) | |1 ]

• Perceptual loss (same as PKO 2021):

F(i)

Mi

ith layer of the VGG19 network
element of the layerith

• Feature matching loss (same as PKO 2021):

LFM = "X,Y ∑
i=1,...T

1
Ni

[ | |D(i)(y) − D(i)(G(x)) | |1 ] T
Ni

total number of layers
number of elements in each layer

D(i) ith layer feature extractor of the discriminator



The Loss Function Ref: ZZWW-2022
• Zhang et al. 2020: classic cycle loss and min-max adversarial loss for both 

luminance and saturation 

  

• Perceptual pixel loss L1 norm for both luminance and saturation: 

 

Loss = λL1 + Ladvf
+ Ladvb

+ β(Lcyclef
+ Lcycleb

)

Lpixel = "(x, y) | |G(x) − y | |1



Self-Supervised



The Loss Function Ref: DF-2017
• Prabhakar et al. 2017: based on SSIM objective metric (which it gives a score)

Loss = 1 − 1
N ∑

p∈P
Score(p)

Score(p) =
2σỹyf

+ C

σ2̃
y + σ2yf

+ C′ 

• : takes into account the contrast and the desired structure, the luminance is 
discharged (local luminance comparison in the patches is not significant):
Score(p)

 number of pixels in the image 
 number of pixels in the patch 
 estimated patch 
 fused patch 

 variance 

 covariance

N
P
ỹ
yf
σỹ σyf

σỹ,yf



The Loss Function Ref: WCS-2022
• Wang et al. 2022: L1 norm based on VGG features maps

Loss = | | f(VGG(Iμ)) − f(VGG(ITM)) | |1

Pre-processing HDR input image to transform  
it into VGG features space, i.e., VGG is trained  
using SDR images

Iμ = log(1 + μIHDR)
log(1 + μ)

IHDR = 0.5 × Isrc

mean(Isrc)

f(VGG(I)) = Ms

1 + Mn

Mn = σb

|μb | + ϵ

Ms = sign(C) |C |α
Feature contrast self-masking

Feature contrast neighborhood-masking

Cp =
fp − f̃p

| f̃p | + ϵ

Feature contrastfeature magnitude 
at pixel p

gaussian filtered feature value for 
patch P centre at pixel p



Future Directions



Color Rendition
• It is based on a simple concept of keeping into the tone mapped image the original 

color ratio of the high dynamic range input image: 

  

• However, several color mapping techniques have been developed: 

• The main aim is to minimize the hue distortion 

• Color gamut mapping 

• Color retargeting: based on optimal saturation parameter

RGBSDR = ( RGBHDR

YHDR )
s

YSDR



Computational and memory management costs 
• Complex models 

• Complex architectures 

• High number of parameters 

• High memory management costs

• Natural question 

• How to reduce the model complexity while retaining similar quality performance?

• Reduces their applicability where we need fast response



Any Questions?



Francesco Banterle and Alessandro Artusi

Modern High Dynamic Range 
Imaging at the Time of Deep 
Learning
Deep HDR Metrics for Images



Why Do We Need Metrics?

• In HDR/SDR Imaging, we need to determine and to understand what is 
happening during different steps of the pipeline: 

• Acquisition: we want to understand if there are artifacts due to acquisition 
or single image reconstruction; 

• Compression: we want small file size at maintaining high-quality; 

• Tone mapping: we want to adapt content for different display while 
keeping quality as it was “scene-referred”.



Reference 
Metric

Q = 42.7

Probability MapReference Image

Distorted Image Quality Value

Reference Metrics



Reference Metrics: Current Limitations

• These models are very complex: 

• Difficult to port to GPUs with ease. 

• They are computationally expensive; e.g., minutes of computations for a full 
HD image. 

• Do we need a distortion map? 

• For most tasks we just need a single value!



DIQM: Deep Image Quality Metric
• A general and simple architecture meant for distilling reference-based metrics 

(e.g., HDR-VDP, DRIIM, etc.) into a CNN architecture.
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DIQM: Datasets

TRAINING SET VALIDATION SET TEST SET TOTAL

HDR-C 
(HDR-VDP 2.2) 12,768 1,596 1,638 16,002

SDR-D 
(HDR-VDP 2.2) 11,536 1,441 1,441 14,418



DIQM: SDR-D Dataset

REFERENCE SDR IMAGE BLUR DISTORTION NOISE DISTORTION



DIQM: SDR-D Dataset

REFERENCE SDR IMAGE QUANTIZATION DISTORTION SIN GRATE DISTORTION



DIQM: HDR-C Dataset
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DIQM:  Loss and Encoding

• Loss is a classic MSE; it works well for predicting quantitative values. 

• Encoding: 

• SDR Images: linear scaling to fit the range  

• HDR Images: 

[0,1]

log10(x + 1)



DIQM: Results Test Set

HDR-C SDR-D



DIQM: Timings Results



DIQM: Conclusions
• There two main results: 

• We can distill metrics into a CNN with reasonable quality; 

• The CNN can be simple; no need of overly complex 
models: 

• The CNN runs real-time at inference time; 

• Small weights.



Visibility Distortion Maps CNN-based
• Several applications (imaging and computer graphics) are requiring a visual 

difference map. 

• Traditional objective metrics can not be used; e.g., single numeric value. 

• Existing visibility metrics produce a visual difference map, but they are 
inaccurate. 

• Lack of large image collections with good coverage of possible distortion. 

• A large dataset of image pairs (ground truth, distorted) is collected, e.g., 
user marking indicate wether the distortion is visible. 

• A CNN is used and trained on this large dataset.



Visibility Distortion Maps CNN-based

−

Distorted Patch

48 × 48

Reference Patch

48 × 48

Concatenation

Distortion

Map

Difference



Visibility Distortion Map: Conclusions

• There main results: 

• A statistical model has been proposed to fit the large 
data collected and used as loss function. 

• Existing visibility metrics can be improved through the 
usage of a CNN based method, which it is trained using 
the collected dataset and using as loss function the 
proposed statical model.



Going No-Reference



No-Reference Metrics

No-reference 
Metric

Q = 42.7

Probability Map

Distorted Image

Quality Value



NoR-VDPNet(++): Architecture

NoR-VDPNet

NoR-VDPNet++
Distorted 

Image

Distorted 
Image



Training Set

FR Metric Q=49

TRAINING SAMPLE

Reference Image
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Input 
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NoRVDPNet(++): HDR-VDP2.2/TMQI Datasets

TRAINING SET VALIDATION SET TEST SET TOTAL

HDR-C 
(HDR-VDP2.2) 49.602 6.216 6.216 62.034

SDR-D 
(HDR-VDP2.2) 80.244 10.025 10.044 100.313

TMO 
(TMQI) 106.290 13.320 13.320 132.930

ITMO 
(HDR-VDP2.2) 106.290 13.320 13.320 132.930



NoRVDPNet(++): TMO Dataset

Drago et al. 2003 Durand and Dorsey 2002 Reinhard et al. 2002

18 tone mapping operators from the HDR-Toolbox: https://github.com/banterle/HDR_Toolbox/ 

https://github.com/banterle/HDR_Toolbox/


NoRVDPNet(++): ITMO Dataset

Input SDR Image Eilertsen et al. 2017

(tonemapped)

Santos et al. 20202

(tonemapped)

6 inverse tone mapping operators 4 available in the HDR-Toolbox: https://github.com/banterle/HDR_Toolbox/ 

https://github.com/banterle/HDR_Toolbox/


NoR-VDPNet(++): Loss and Encoding

• Loss is a classic MSE; it works well for predicting quantitative values: 

• Encoding: 

• SDR Images: linear scaling to fit the range  

• HDR Images: 

[0,1]

log10(x + 1)



Results: HDR-C Test Set
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Results: SDR-D Test Set

NoRVDPNet NoRVDPNet++

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Error: Predicted Value - Ground Truth

0

200

400

600

800

1000

1200

1400

1600

1800

O
cc

ur
re

nc
es

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Error: Predicted Value - Ground Truth

0

200

400

600

800

1000

1200

1400

1600

1800

O
cc

ur
re

nc
es



Results: ITMOS Test Set

NoRVDPNet NoRVDPNet++
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Results: TMOS Test Set

NoRVDPNet NoRVDPNet++
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NoR-VDPNet(++): Conclusions
• We can go from reference to no-reference; 

• When we model several distortions we have a larger error 
than a single distortion; 

• Layer normalization increases quality; 

• This scheme works for TMQI (SSIM-based); 

• Still real-time performance.



NR-IQA 



NR-IQA Principle

Perceptual resistance

Difference Mean Opinion Score

• Perceptual threshold 

• Not from 
psychophysical 
experiments 

• Data driven 
method

σ(i, j) = mean( Y − Ydistorted )

DMOS(i, j) = 1 − exp (− k × σ̃(i, j)
T(i, j) )

P-net E-net

Mixing  
function

Image block 
y(i, j)

DMOS(i, j)

T(i, j) σ(i, j)



NR-IQA Training - Phase 1

P-net E-net

Mixing  
function

Image block 
y(i, j)
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Frozen weights

Inactive during Phase 1



NR-IQA Training - Phase 2 

P-net E-net

Mixing  
function

Image block 
y(i, j)

DMOS(i, j)

T(i, j) σ(i, j)

Frozen weights
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NR-IQA: Conclusions
• Main results: 

• Computational performances are not real-time, but it 
can be still optimized. 

• It outperforms other NR-IQA methods. 

• It is comparable to HDR FR-IQA: 

• without the need of a reference image.



Applications



Applications: Optimization Tasks
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Applications: Optimized TMO

TMO without optimized parameters TMO with optimized parameters

Video Courtesy of Jan Fröhlich - Stuttgart HDR Video Dataset



Application: A Differentiable TMOmade an application that try to optimize the parameter of this
sigmoid TMO:

Ld =
Lw↵

Lw↵+ µ
Cd =

✓
Cw

Lw

◆�

Ld, (3)

where Cw and Cd are respectively a HDR and a SDR color
channel, Lw and Ld are respectively the HDR and SDR lu-
minance, and ↵, µ, and gamma are, respectively, tone-curve
and color saturation learnable parameters. Figure 7 shows
tone mapped images using this optimization process with the
TMQI predicted by the network at the end of the optimization
and its corresponding real value. The proposed tone mapping
optimization can be also employed for selecting TMO param-
eters for JPEG-XT compression using HDR-C results.

7. DISCUSSION AND CONCLUSIONS

We have showed that CNN architectures can successfully dis-
till the knowledge of existing reference metrics like HDR-
VDP 2.2 [1] and TMQI [2]. In this work, we have presented
NoR-VDPNet++, an improved variant of [15] that achieves
more reliable quality scores while keeping real-time perfor-
mance. This allows NoR-VDPNet++ to be employed in any
real-time constrained application such as optimization pro-
cesses for parameter selections as tone mapping, and images
selection from collections of photograph or Structure-from-
Motions task to name a few.Recent works are providing an
insight study to better understand and motivate the capabili-
ties of intermediate features maps, of a pre-trained CNN, to
predict image distortion similar to how humans do. For ex-
ample, Zhang et al. [25] have systematically study to evalu-
ate features maps across different CNN architecture, showing
how they are outperforming classical objective metrics. Tariq
et al. [26], have shown the existing correlation between the
capabilities of pre-trained deep CNN features in optimizing
the perceptual quality with their success in capturing basic
human visual perception characteristics. The above suggests
that future work directions are towards a more deep investi-
gation in exploiting the potential of the use of features maps,
of a pre-trained CNN architecture, as an objective metric for
image/video evaluation.A systematic study on how to take ad-
vantage of the use of these feature maps in the context of our
NoR-VDPNet++, will be the next future step of our research
directions.
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where Cw and Cd are respectively a HDR and a SDR color
channel, Lw and Ld are respectively the HDR and SDR lu-
minance, and ↵, µ, and gamma are, respectively, tone-curve
and color saturation learnable parameters. Figure 7 shows
tone mapped images using this optimization process with the
TMQI predicted by the network at the end of the optimization
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till the knowledge of existing reference metrics like HDR-
VDP 2.2 [1] and TMQI [2]. In this work, we have presented
NoR-VDPNet++, an improved variant of [15] that achieves
more reliable quality scores while keeping real-time perfor-
mance. This allows NoR-VDPNet++ to be employed in any
real-time constrained application such as optimization pro-
cesses for parameter selections as tone mapping, and images
selection from collections of photograph or Structure-from-
Motions task to name a few.Recent works are providing an
insight study to better understand and motivate the capabili-
ties of intermediate features maps, of a pre-trained CNN, to
predict image distortion similar to how humans do. For ex-
ample, Zhang et al. [25] have systematically study to evalu-
ate features maps across different CNN architecture, showing
how they are outperforming classical objective metrics. Tariq
et al. [26], have shown the existing correlation between the
capabilities of pre-trained deep CNN features in optimizing
the perceptual quality with their success in capturing basic
human visual perception characteristics. The above suggests
that future work directions are towards a more deep investi-
gation in exploiting the potential of the use of features maps,
of a pre-trained CNN architecture, as an objective metric for
image/video evaluation.A systematic study on how to take ad-
vantage of the use of these feature maps in the context of our
NoR-VDPNet++, will be the next future step of our research
directions.
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Future Directions
• Novel datasets have been published for HDR videos with MOS: 

• https://live.ece.utexas.edu/research/LIVEHDR/
LIVEHDR_index.html  

• HDR videos/NeRFs metrics seem a natural next step. 

• HDR Metrics based on deep-learning have only now started to 
appear. 

• We still need to rely on experiments for capturing large datasets. 

https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
https://live.ece.utexas.edu/research/LIVEHDR/LIVEHDR_index.html
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